
210 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

New Sorting-Based Lossless Motion Estimation
Algorithms and a Partial Distortion Elimination

Performance Analysis
Bartolomeo Montrucchio, Member, IEEE, and Davide Quaglia, Member, IEEE

Abstract—In video encoding, block motion estimation represents
a CPU-intensive task. For this reason, many fast algorithms have
been developed to improve searching and matching phases. A mile-
stone within the lossless approach is partial distortion elimination
(PDE/SpiralPDE) in which distortion is the difference between the
block to be coded and the candidate prediction block. In this paper,
(i) we analyze distortion behavior from local information using
the Taylor series expansion and show that our general analysis in-
cludes other previous similar approaches. (ii) Then, we propose two
full-search (lossless), fast-matching, block motion estimation algo-
rithms, based on the PDE idea. The proposed algorithms, called
fast full search with sorting by distortion (FFSSD) and fast full
search with sorting by gradient (FFSSG), sort the contributions to
distortion and the gradient values, respectively, in order to quickly
discard invalid blocks. Experimental results show that the pro-
posed algorithms outperform other existing full search algorithms,
reducing by up to 20% the total CPU encoding time (with respect
to SpiralPDE), while the computation strictly required by the mo-
tion estimation is reduced by about 30%. (iii) Finally, we experi-
mentally find an operational lower bound (based on standard test
sequences) for the average number of checked pixels in the PDE
approach, which measures the performance of the searching and
matching phases. In particular, SpiralPDE achieves performances
very close to the searching phase bound, while there is still a re-
markable margin on the matching phase. We then show that our
algorithms, aimed at improving the performances of the matching
phase, achieve interesting results, significantly approaching this
margin.

Index Terms—Distortion Taylor expansion, fast block matching,
full search, lossless motion estimation, partial distortion elimina-
tion (PDE) bounds.

I. INTRODUCTION

I N VIDEO encoding, motion compensation is used to im-
prove the efficiency of the prediction from past or future

frames. Motion estimation (comprehensive surveys can be
found in [1]–[3]) is the process of evaluating movements
between adjacent frames. The so-called “block-matching algo-
rithms” are the most important of these estimation methods,
especially in coding schemes based on discrete cosine trans-
form. Pel-recursive, frequency-domain, and gradient-based
motion estimation methods are less frequently used.

Manuscript received January 15, 2002; revised November 22, 2002. This
work was supported in part by the Center for Multimedia Radio Communi-
cations, Politecnico di Torino, Torino, Italy. This paper was recommended by
Associate Editor S. E. Lee.

The authors are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, I-10129 Torino, Italy (e-mail: bartolomeo.montruc-
chio@polito.it; davide.quaglia@polito.it).

Digital Object Identifier 10.1109/TCSVT.2004.841689

For each test block in the current frame, the block-matching
methods find the most similar candidate block in the frame used
for prediction. The displacement between these two blocks is
the motion vector for all pixels of the given test block.

The most accurate block-matching method is the full search
(FS) that compares every possible candidate block in the search
window with the test block; in this way, it produces accurate
results, but it is computationally intensive.

The block-matching motion estimation is used in well-known
video encoding standards, such as MPEG-1 [4], MPEG-2 [5],
MPEG-4 [6], H.261 [7], H.263 [8], and H.264 [9]. In these stan-
dards, FS motion estimation requires up to 70% of the encoding
time [10], thus negatively affecting the performance of the hard-
ware and software encoders.

For this reason, several alternative and faster techniques have
been developed, based on lossy and lossless algorithms, that try
to reduce computational complexity by pruning the search space
with respect to the FS method or reducing the number of pixels
considered during block matching between candidate and test
blocks (for example, by interrupting the comparison when the
partial distortion between the two blocks is larger than a certain
threshold).

Many of these techniques are also feasible for hardware
implementation, even if a software real-time solution is now
possible [10]. Video coding is becoming an integral part of
the multimedia capabilities of today’s PCs and the demand for
video quality increases with CPU speed. Therefore, lossless
algorithms may be adopted if their performance is not too far
from the performance of lossy ones.

In order to speed up the motion estimation, we have to con-
sider the pixel-to-pixel distortion between the block to be coded
and the candidate prediction block. In this paper, we analyze
distortion behavior from local information using the Taylor se-
ries expansion, and we propose two fast algorithms denoted as
fast full search with sorting by distortion (FFSSD) and fast full
search with sorting by gradient (FFSSG). These two algorithms
are based on the sorting of distortion and gradient values on a
pixel-by-pixel basis. They reduce the total encoding time by up
to 20% with respect to a reference lossless method, the Spiral
partial distortion elimination (PDE) [11], while the computation
for motion estimation is reduced by about 30%. The proposed
algorithms are also compared with other PDE-based lossless ap-
proaches known in literature, and there is a significant gain over
all of them. We also experimentally analyze the potentialities
of the lossless PDE technique in order to find out if it can be

1051-8215/$20.00 © 2005 IEEE

MONTRUCCHIO AND QUAGLIA: NEW SORTING-BASED LOSSLESS MOTION ESTIMATION ALGORITHMS 211

TABLE I
NOTATION TABLE

further improved; the analysis shows that the improvement ob-
tained with FFSSG algorithm is near to half the maximum op-
erational improvement of the PDE technique.

The actual software implementation used for our experiments
is based on the MPEG-2 reference encoder [12], [11].1

The paper is organized as follows. Section II introduces some
background. Section III theoretically analyzes distortion using
the Taylor series expansion and shows how such an analysis
includes other previous methods; it also describes FFSSD and
FFSSG algorithms in detail. Section IV reports the experimental
results for the proposed algorithms and shows the potentialities
of the PDE approach exploited by FFSSD and FFSSG. Finally,
conclusions and future work are drawn in Section V.

II. BACKGROUND

Block-matching methods find the most similar candidate
block in the frame used for prediction; to measure the match
between the two blocks, the most frequently used criterion is
the sum of absolute differences (SAD). SAD is defined as

SAD (1)

where is the position of the macroblock being coded, is the
candidate motion vector, is the block width/height,
is the luminance intensity of the pixel in the block with po-
sition in the frame at time , and is the luminance
intensity of the pixel in the candidate prediction area situ-
ated at position in the frame at time .

Table I reports the notation used in whole paper. is a
sequence of numbers representing the order in which the
pixels of the blocks are picked during SAD computation. will
be explicitly used in Section III, while in (1) the order adopted
is the raster scan (top-to-bottom, left-to-right). Block matching
methods search for the smallest SAD by varying within
a rectangular region called search window (). The FS method
computes SAD for every candidate vector in . This method
has been improved, both by pruning the search space (fast
searching techniques) and by reducing the complexity of SAD
computation (fast matching techniques). Both these different
improvement techniques can be lossless or lossy, in the sense
that coding efficiency is respectively equal or worse with re-
spect to FS. Lossy techniques are typically faster than lossless
at the expense of coding efficiency.

This classification, even if it is not the only one possible, is
feasible for the purposes of this work. In fact, the two algorithms

1Available. [Online]. http://staff.polito.it/bartolomeo.montrucchio/FFSSDG
or http://multimedia.polito.it/FFSSDG/

we are presenting are fast matching, lossless (using the PDE
approach) block-matching methods.

In the following, we will provide an overview of both fast
searching and fast matching improvement techniques. Lossy
and lossless approaches will be described for each of these two
methods. Many algorithms combine more than one technique
(e.g., lossy fast searching and lossy fast matching) and could be
inserted into more than one category. This classification is made
upon the main characteristic, where useful, secondary character-
istics are reported as well.

A. Fast Searching

1) Lossy: There are many lossy motion estimation algo-
rithms which reduce the number of tested points in the search
window with some degradation of the prediction performance
with respect to FS. Usually these algorithms exploit some
general properties of natural images to reduce computational
time [13]. One of these properties is that the block motion
field of real-world video sequences usually varies slowly and,
therefore, motion vectors have a center-biased distribution
instead of a uniform distribution. Recent examples are the new
three-step search (N3SS) [14], the four-step search (4SS) [15],
the simple and efficient search (SES) [16], the block-based gra-
dient descent search (BBGDS) [17], and the one-dimensional
(1-D) gradient descent search [18]. Some genetic algorithms
have been developed in order to avoid local minimum points
[19]–[21]. Among adaptive algorithms, the adaptive search
length (ASL) [22] varies the number of tested positions in the
search space. In [23], two techniques are presented: an en-
hancement of the logarithmic search (also using fast matching
lossy subsampling) and an approach for dynamically varying
the size of the search window according to SAD . Some
approaches exploit the spatial and temporal correlation between
motion vectors to find a good starting point in the search space
[24]–[28]. In [29], a diamond pattern is used to encode different
diamond-shaped zones in the search window, so as to interrupt
the search when a threshold is reached. A fuzzy approach is
used in [30], and the gray prediction theory is adopted in [31].
In [32], search space is reduced with a very low image error;
a simple threshold updating mechanism allows the algorithm
to be easily realized in VLSI. Finally, in [33], algorithms
proposing both fast searching and fast matching are presented.
Partial SAD (as shown later in Section II-B1) is used to limit
the number of candidate vectors in the search space.

2) Lossless: Lossless fast searching, as well as previous al-
gorithms, are based on general properties, in particular of norms
of blocks. An important example is the successive elimination
algorithm (SEA) [34], which reduces the number of positions
in the search space, thus decreasing the number of matching

212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

evaluations. In the exhaustive search, the SAD is computed for
each point in the search window; the candidate having the min-
imum SAD value at the end of the search area is the selected
motion vector. In SEA, distortion values are efficiently precom-
puted and by using some properties of the norm it is possible to
avoid SAD computation for a high number of test blocks. Only a
minimum percentage of test blocks needs the SAD evaluation.
In [35], multiple matching criteria are used to compare refer-
ence and test blocks. If three fast matching criteria are not sat-
isfied, SAD computation is avoided for that candidate block. In
[36], SEA is used to implement a new rate-constrained exhaus-
tive search with reduced computational complexity. In [37], the
authors show how to combine SEA with the PDE approach, both
in a lossless and lossy way. In [38], SEA is improved by intro-
ducing a method for the initial motion vector selection (since the
efficiency of SEA largely depends on the initial candidate mo-
tion vector), and it is also extended to MPEG-4 by using both
16 16 and 8 8 blocks. SEA is also used and improved in
[39] and [40] and for long-term memory motion-compensated
prediction [41].

Multilevel SEA [42] partitions a block into several subblocks,
then it uses sum norms of subblocks to generate a faster decision
in order to discard as many candidates as possible. MSEA is
further improved in the adaptive search order (ASO) [43]; in
this case, the order of blocks used in MSEA is determined by
using the predicted initial motion vector. Extended SEA (ESEA)
[44] introduces tighter bounds for SAD and exploits the already
calculated lower bounds during the calculation of the matching
criterion (ESEA also extends SEA so as to substitute the SAD
with the MSE).

B. Fast Matching

1) Lossy: Fast matching approaches aim at reducing SAD
computation time for each test block by testing only a subset of
the pixels in the block. Important work on lossy fast matching
is proposed in [45] and [46]; one of the techniques consists of
pixel-decimation patterns during candidate-test block compar-
ison. In [47]–[49], subsamples are taken on the most represen-
tative pixels. In [50], the order used for scanning the block is
the so-called Hilbert sequence, which is shown to be better than
the raster scan order. In this way, sorting, which is required in
[47], is avoided. Sorting is also used in [51] in order to carry
out decimation; in fact, all of the pixels within each macroblock
are sorted in order, and the darkest and the brightest pixels are
chosen as representative pixels. We will see how a similar or-
dering problem is specifically addressed in the algorithms pro-
posed in this paper. A two-step search algorithm (TWSS) [52]
combines the reduction of the search area with subsampling
in the matching phase. In particular, a pattern is used in the
block, and a subset of pixels (48 instead of 256 for the ex-
periment in the paper) is used to approximate block-matching
error. Also, the search area is decimated, and, since the combina-
tion of these two decimations could lead to an excessive loss in
quality, more than one pixel in the search area is chosen during
block-matching comparison. In this way, these pixels can be
used for the second search phase. It is important to note that the
number of pixels used for subsampling the block during block

matching is chosen by analyzing a test sequence which shows
that a uniform subsampling of the block is meaningful.

PDE is based on a simple idea. Since total distortion (e.g.,
SAD) between two blocks is obtained by progressively adding
partial pixel-to-pixel differences, then a block comparison can
be safely interrupted if the partial distortion becomes greater
than the minimum distortion already found for another candi-
date block in the search window. PDE will be described in detail
in Section II-B2. Even though PDE is a lossless fast matching
approach, it can also be used in a lossy way. In [53], partial dis-
tortion and the current minimum distortion are normalized on
the number of checked pixels before comparison. This method,
called normalized partial distortion search (NPDS), has been
improved in [54] by introducing progressive partial distortions
at a very early stage so that computations can be further reduced.
In [55], SAD computation is early abandoned once it becomes
clear that, given partial SAD, total SAD will exceed the min-
imum distortion found thus far. In that work, PDE is based on
a probabilistic criterion. Once again, a uniform partition pattern
for pixel decimation is used. The idea of uniform partition has
also been adopted for lossless fast matching (in [56]).

2) Lossless: The lossless fast matching approach can be
very attractive, since it can be easily combined with a lossless
fast searching approach (e.g., SEA) without any loss in quality.
PDE [12], as already explained in Section II-B2, is a lossless
approach. In particular, given a search window, the original
PDE scans the window in a raster order, line by line, from top
to bottom. In the same way during block matching, SAD is
computed line by line from top to bottom. The comparison with
the minimum SAD already found (to early discard candidates)
is performed for every row (i.e., every 16 pixels). SpiralPDE
[11] scans the search window using an outward spiral order. In
fact, in most cases, the optimum motion vector is in the center
of the search window and its SAD, taken as the upper bound,
allows a large number of candidate blocks to be discarded. This
outward spiral search strategy, even if simple, is very effective,
as will be shown later in Section IV-B, when an analysis of
PDE bounds will be performed.

In the original SpiralPDE, the matching order is raster scan
even if there are no reasons why the first lines are more repre-
sentative than others. If no assumptions are made on the frame
content, the best way of selecting pixels for partial SAD com-
putation is to use a uniform strategy [56]; while (as reported
in Section II-B1) many lossy algorithms use uniform grid or-
dering, in [56], the Sobol’s pseudorandom sequence is adopted
[57]. This is because, even though the most uniform order is a
grid one, grid uniformity is lost if it is interrupted. Instead, ac-
cording to PDE theory, the Sobol’s sequence can be interrupted
at any moment.

A more sophisticated approach also has to consider the frame
content. This has been done by Kim et al. in [58]–[61], where the
matching order is computed using gradient values of the block
to be coded. This matching order remains the same for all can-
didate blocks. Gradient is used because a relationship is derived
between the gradient of the reference block and the matching
distortion; specifically, it turns out that matching distortion is
proportional to gradient magnitude of the reference block. Gra-
dient is computed as reported in the simplest approximation of

MONTRUCCHIO AND QUAGLIA: NEW SORTING-BASED LOSSLESS MOTION ESTIMATION ALGORITHMS 213

[62]. Later in this paper we will derive a more general relation-
ship that includes this one as a particular case.

In [58], four different algorithms are proposed. The first uses
adaptive-matching scan of 16 16 blocks based on computed
gradient magnitude, the second applies a top-to-bottom scan of
each of the 8 8 blocks based on the order of gradient magni-
tude, the third uses an adaptive-matching scan of 8 8 blocks
based on the order of gradient magnitude, and the fourth is a
top-to-bottom scan of 4 4 blocks based on the order of gra-
dient magnitude. P4 (the fourth) gets the best results. In [59],
the same authors propose two other algorithms. The first is an
adaptive-matching scan based on representative pixels, while
the second (P2, which is the better of the two) uses an adap-
tive-matching scan by sorted rows/columns based on represen-
tative pixels. P4 appears to be the fastest, and it will be used
in our comparison as the reference algorithm for Kim–Choi’s
work. Block-matching properties and a review of ideas pre-
sented in their previous papers are also shown in [63], while pro-
posed algorithms are further detailed in [61] and in [60]; how-
ever, the P4 algorithm of [58] remains the fastest.

III. PROPOSED ALGORITHMS

In the motion estimation process, for each macroblock of the
frame being coded (test macroblock), the most similar
area in the reference frame is used as its prediction and the dis-
placement (motion vector) is coded in the bitstream together
with the DCT-transformed residual error. The prediction block
is usually searched in a rectangular area centered on the position
of the test macroblock (search window) by evaluating a func-
tion known as matching criterion. Since DCT will be applied to
the residual error between the test macroblock and its predic-
tion, it is essential to adopt a matching criterion that leads to the
most compact DCT coefficient configuration. It was shown in
[64] that the sum of absolute differences (SAD) defined in (1)
is a good tradeoff between effectiveness and simplicity (refer
to Table I for the notation). Therefore, the motion estimation
process for the macroblock at position can be formulated as
finding such that

SAD SAD (2)

It is important to note that (1) refers to the matching process
while (2) refers to the searching process; the matching process
is nested into the searching process. Many motion estimation
algorithms can be classified according to the way in which
varies in (1) (matching strategy) and varies in (2) (searching
strategy).

The PDE approach uses the partial sum of differences to elim-
inate impossible candidates before the complete calculation of
the SAD. As shown in

SAD SAD

(3)

the partial sum of differences is computed until it becomes equal
to or greater than the minimum SAD already found (with an-
other candidate vector). In particular, in (3), the matching is per-
formed row by row and the test is performed after every row. If
this condition becomes true for , the candidate vector
is rejected without further computations (it is the rejection con-
dition).

The searching strategy, that is, to say, the order in which
blocks are tested during the searching phase, affects the speed
of the whole estimation; in fact, if a good prediction is found
early, then many more successive tests have a tighter distor-
tion bound and may be skipped. For example, SpiralPDE im-
proves the basic PDE algorithm using a spiral outward trajec-
tory starting from the center of the search window according to
the statistical distribution of the optimum motion vectors.

Also, the matching strategy, that is, to say, the order in which
pixels within a block are picked up to compute the SAD, affects
the speed of the motion estimation; in fact, if the highest contri-
butions to SAD are found early, then the distortion bound may
be reached after a small number of differences and the partial
sum can be stopped.

Equation (1) can be rewritten as (4) in which the
top-to-bottom row-by-row matching order is replaced by
the generic order (being a summation, SAD does not change
with this order). In (4) and in the following equations, we omit

after since provides the same meaning:

SAD (4)

The PDE approach shown in (3) can be rewritten as in

SAD

SAD (5)

in which is the number of differences needed to reach
SAD . The comparison with SAD can be performed
every differences. In this context, matching optimization
consists of finding a matching order such that the highest
contributions to SAD are checked first and, therefore, the
average number of differences needed to reach SAD is
kept small. SpiralPDE can be considered the simplest version
of this approach since it uses a top-to-bottom row-by-row
scan, as shown in (3); for this reason, we use SpiralPDE as
the comparison term of our algorithms. SpiralPDE is based
on the implicit assumption that the first rows of the block
should contain the highest contributions to SAD. As reported in
Section II-B1, many algorithms avoid this arbitrary assumption
by using a uniform grid or a pseudorandom uniform order
(Sobol’s order in [56]), suggesting that, without any knowledge
about the distortion distribution, we have to assume that the
highest contributions are uniformly spread over the block. To
further improve matching, it is necessary to have much more
information about the pixel values of the test block; in this
study, we detail the relationship between the pixel values in a
block and those in the adjacent blocks (i.e., for other candidate
vectors).

214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

A. Taylor Series Expansion of the Distortion

Using the notation of (1) and (3), let be the distor-
tion, function of the candidate vector and the pixel defined
as follows:

(6)

We are interested in estimating the behavior of with
different values of the candidate vector . If the value of is
known for a given vector (e.g., for the null vector 0), then we ap-
proximate its value in the neighborhood by means of the Taylor
series expansion, which is reported in

(7)

According to (7), the value of is estimated from the
sum of and the differential term obtained through the
inner product (denoted as) between the gradient vector of

and the difference vector .
Equation (7) suggests that the magnitude of the differences in

the center of the search window together with their differential
term can provide some information about pixel differences for
other candidate vectors (e.g., vector). In particular, given two
pixels at position and (in the coordinate system
of the block) we have that

(8)

(9)

Since we aim at finding the matching order in which the highest
contributions to SAD are checked first, we have to estimate
the greatest between and through the be-
havior of this function for other candidate vectors. For example,
if in the center of the search window

and
(10)

then, according to (8) and (9), we assume that

(11)

In other words, the matching order that minimizes the number
of computations in the center of the search window may also be
effective for other candidate vectors.

B. FFSSD

The first proposed algorithm, called FFSSD, uses only the
first term of (7) that is the distribution of differences (distor-
tion) between the test block and the candidate area in the center
of the search window. Differences are computed for all pixels
in the center of the search window and positions are sorted in
decreasing order of this value. The sequence of sorted positions
is then used as the matching order for the other candidate vec-
tors of the search window (which are tested in spiral order as
in SpiralPDE). The matching process in the center of the search
window, that is to say the one with the null candidate vector, re-
quires the computation of all the differences in the grid
as in every PDE approach, but since the value of SAD
has to be initialized, FFSSD involves no extra difference com-

putation with respect to SpiralPDE. In FFSSD, the comparison
with SAD is performed every eight pixels and this choice
seems a good tradeoff (see also [56]) between the cost of com-
parisons and the number of useless differences (when the par-
tial SAD is already greater than SAD). It is worth noting that
FFSSD generalizes the approach followed by Ng and Zeng [51].

C. FFSSG

When the macroblock being coded is quite similar to the area
in the center of the search window, the first term of the Taylor
expansion may become quite small and, therefore, it cannot be
used to determine an optimized matching order (we could con-
clude that this is the best vector but we are performing an ex-
haustive full search). In other words, if all differences in the

grid are null, sorting is meaningless. In this case, we
have to consider the second term in (7) that is the spatial gra-
dient of in the center of the search window. Moreover,
according to (7), the importance of this term increases with the
magnitude of the candidate vector .

The second proposed algorithm, called FFSSG, is based on
this idea; instead of using the value of differences (as in FFSSD),
it gets an optimized matching order by sorting positions in de-
creasing order of the gradient of . Considering (6), we
further approximate the gradient of through the spa-
tial gradient of computed as the average of the gradient
along eight directions, as shown in

(12)

The resulting value is between 0 and 255. This approximation
is based on some preliminary experimental results and its gen-
eral validity should be verified theoretically. In FFSSG, the com-
parison with SAD is performed every eight pixels as in
FFSSD. The candidate vectors are tested in spiral order as in
both FFSSD and SpiralPDE.

It is worth noting that FFSSG, in a more general framework,
includes the approaches followed by Chan and Siu [47], Wang
et al. [50], and Kim and Choi [58]–[61]. In particular, FFSSG
does not use the first term of the Taylor’s expansion of the distor-
tion (7), just like in Kim’s work [58]–[61] (these works use the
Taylor’s expansion to show the fact that the matching distortion
at a certain position is proportional to the gradient magnitude
of reference block in the current frame). The two algorithms
are similar, but Kim’s work uses a local-area-based-gradient
sorting, while FFSSG works on pixel-based-gradient sorting.
We found that a pixel-based approach can significantly improve
performance, if the sorting operation is efficiently performed.
On the other side, the use of eight directions for computing
gradient, and of eight pixel-checking unit (for the eight pixel
checking unit, previous results are reported in [56]) gives only
a little effort versus the 16 pixel-checking unit and the simpler
method for gradient computation used by P4.

D. Sorting

FFSSD and FFSSG require a sorting phase in which a vector
of 256 elements must be ordered according to key values be-

MONTRUCCHIO AND QUAGLIA: NEW SORTING-BASED LOSSLESS MOTION ESTIMATION ALGORITHMS 215

TABLE II
MOTION PICTURE SEQUENCES USED DURING TESTS

tween 0 and 255 (differences and gradient values, respectively).
This fixed range allows the use of a fast sorting technique with
linear complexity based on counting sort [65]; according to this
technique, each key value is used as an address in a sparse vector
which is then compacted using fast copying routines.

IV. EXPERIMENTAL RESULTS AND REMARKS

A. FFSSD and FFSSG

In order to compare the performances of the proposed algo-
rithms with other methods, we have used 23 different standard
sequences. For each of them, Table II reports an identification
number, the commonly used name, the number of frames, the
image size, and the referenced papers that use that sequence.
It is useful to note that the total number of frames used is of
several thousands (about 8000), with QCIF (176 144), CIF
(352 288), and CCIR-601 (702 576) formats to show the
performance the algorithms with different image sizes. Some se-
quences have also been tested with different resolutions. The se-
quences marked with in Table II are ISO standard sequences
for medium bit-rate video coding efficiency tests. Chosen se-
quences cover several motion possibilities, ranging from slow
motion (e.g., Claire and Grandmother) to large motion (e.g.,
Foreman). As can be seen in Table II, the set of used sequences
is (when possible) a superset of the test sequences usually used
in several other papers.

We compare the proposed FFSSD and FFSSG with
SpiralPDE, which is the reference PDE algorithm with
top-to-bottom raster scan matching and spiral searching [11],
SPD [56] to represent full search techniques using different
matching order methods, and the P4 algorithm from [58], which
performs a top-to-bottom scan of 4 4-sized blocks based on
the order of gradient magnitude. Algorithms based on SEA
have not been reported because they can be combined to all
tested algorithms (as stated in [37]), and for this reason they
are not in direct competition with FFSSD and FFSSG. The P2
algorithm [59] is not reported because its results are worse than
those for P4 of [58] (as explained in Section II-B2).

The tests have been performed using a modified version of the
Test Model 5 MPEG-2 encoder [12], and the code is available
for download, as reported in Section I.

In our experiments, the block size is 16 16 pixels, while
the width/height of the search area is 15 10 for QCIF and
30 20 for both CIF and CCIR-601 image formats. The search
width/height is the same for both P and B pictures. SAD [see
(1)] is used as the criterion for block matching.

Simulation results (all tested algorithms have been imple-
mented) are reported in two different ways:

• checked pixels per block, i.e., the average number of pixels
per block used to compute the partial distortion;

• total CPU time needed to encode the whole sequence with
the modified MPEG-2 encoder.

216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 1. Average number (for each sequence) of checked pixels per block for
SPD, P4, FFSSD, FFSSG, and SpiralPDE.

While pixel number is a measure for the motion estimation
phase only, total CPU time reflects the actual gain the algorithm
can provide in a not-optimized implementation. In particular,
we have tried not to favor a particular algorithm in our imple-
mentation, since an optimized (software [10] or hardware) im-
plementation may use the characteristics of the available hard-
ware (e.g., CPU instruction sets such as MMX and VIS), and the
choice of the hardware can also influence the choice of the algo-
rithm. Our implementation can instead reveal the impact of the
block-matching algorithm on a general-purpose architecture. In
particular, all total encoding time results have been obtained in
several tests on different i386–based machines (Intel Pentium
III and AMD Athlon) in order to minimize small differences due
to single test conditions; all tests have been performed using the
Linux operating system.

It is also worth noting that there are additional computational
costs in all algorithms except for SpiralPDE. In fact, P4 and
FFSSG algorithms compute gradient for all pixels in the ref-
erence block; FFSSG gradient computation is more complex,
since P4 uses the simple gradient implementation reported in
[62]. FFSSD algorithm does not have such overheads, since the
complete distortion computation with the central test block is
always performed in every PDE approach, and no tests are done
on the reference block; however, the sorting phase influences

Fig. 2. Reduction of the number of checked pixels for each sequence with
SPD, P4, FFSSD, and FFSSG. Reduction is expressed as the fraction of checked
pixels with respect to SpiralPDE.

performance and, even though complexity is , sorting over-
head is appreciable (the same happens in FFSSG). Further, P4
uses an ordering algorithm for the 16 subblocks. All algorithms
(except for SpiralPDE and P4) make comparisons every eight
pixels instead of every 16 pixels. The reason for this choice can
be found in [56] and is based on the observation that the total
CPU encoding time has the best reduction with eight-pixel com-
parisons with respect to 16–pixel comparisons. Moreover, for all
tested algorithms (always with the exception of SpiralPDE), the
access order of pixels in memory could be complex (e.g., with
cache miss problems), and it could depend on the hardware ar-
chitecture.

For all of these reasons, we also report the total CPU encoding
time and, in particular, we give the reduction of this time, since
it varies greatly with the sequence, the number of frames in the
sequence, and the image format.

Fig. 1 reports, for each sequence of Table II, the average
number of checked pixels per block for SPD, P4, FFSSD,
FFSSG, and SpiralPDE. This number, which can vary from 1
to 256, changes greatly with the sequence (even if less than
the encoding time), but from the Foreman sequence—that
is reported both in QCIF (sequence number 4) and in CIF
(sequence number 16) format—we can see that it does not vary
significantly with the image format. Fig. 2 shows, for each

MONTRUCCHIO AND QUAGLIA: NEW SORTING-BASED LOSSLESS MOTION ESTIMATION ALGORITHMS 217

TABLE III
CHECKED PIXEL REDUCTION AND ENCODING TIME SPEEDUP (ON ALL SEQUENCES) FOR SPD, P4, FFSSD, AND FFSSG IN PERCENTAGES WITH RESPECT TO

SPIRALPDE. MEAN VALUE AND STANDARD DEVIATION (IN BRACKETS) ARE REPORTED FOR EACH MEASURE

Fig. 3. Reduction of the encoding time for each sequence with SPD, P4,
FFSSD, and FFSSG. Reduction is expressed as the fraction of CPU time with
respect to SpiralPDE.

sequence, the average number of checked pixels per block for
SPD, P4, FFSSD, and FFSSG normalized on SpiralPDE. The
first row of Table III reports, for all algorithms, the mean value
and the standard deviation (on all sequences) of the checked
pixel reduction with respect to SpiralPDE. FFSSG is the fastest
algorithm, with 29.84% improvement on SpiralPDE (P4 gets
17.40%) even if FFSSD also performs well (24.1%).

In particular, the significant improvement of FFSSG versus
P4 (the two algorithms are similar) can then be explained with
the fact that, in actual test sequences, the most significant pixels
are not localized in small and well-defined areas, and this means
that a matching order based on a single pixel granularity can be
more efficient than a 4 4 block-based granularity. The same
principle can explain the performance of SPD and FFSSD.

From the point of view of the total encoding time, Fig. 3 re-
ports, for each sequence of Table II, the CPU times of SPD,
P4, FFSSD, and FFSSG normalized on SpiralPDE. We can see

that the FFSSG algorithm produces a good improvement with
respect to the other algorithms, and the gain is constant for all
sequences and image formats. FFSSD also produces a gain, but
less than FFSSG. P4 has a worse CPU time gain, and specifi-
cally for some sequences it performs badly.

The second row of Table III reports, for all algorithms, the
mean value and the standard deviation (on all sequences) of
the CPU time speedup normalized on SpiralPDE. FFSSG shows
the best performance, since it reports a 20.8% of total encoding
time reduction with respect to SpiralPDE, while FFSSD pro-
vides 14.45% and P4 provides 13.04%.

B. Experimental PDE Analysis

The purpose of this section is to find an operational lower
bound (based on standard test sequences) for the average
number of checked pixels per block in the PDE approach.
Possible optimizations of PDE aim at the fast detection of the
minimum SAD for the searching phase and the estimation of the
largest contributions to SAD for the matching phase. Therefore,
if the searching algorithm knew a priori the minimum SAD
and the contribution of each pixel-to-pixel difference, it would
achieve optimal performances.

The first test case (Search Wizard) finds the optimal speedup
that can be obtained by improving only the searching phase
(always with a full search strategy). For every macroblock,
the algorithm initializes SAD with the global minimum of
distortion for that macroblock and then performs a traditional
motion estimation. Since SAD is the smallest possible,
the greatest number of candidate vectors are rejected without
performing the full SAD computation (lower bound for the
average number of checked pixels per block). Some algorithms
estimate the global minimum of distortion by predicting the
best motion vector from the spatially neighboring macroblocks.
Instead, in our case, the estimation is replaced by the actual
minimum of distortion found with a preliminary motion es-
timation. In fact, here we are not interested in finding a fast
algorithm but a lower bound for the number of checked pixels.
The second test case (Match Wizard) finds the optimal speedup
achievable by optimizing only the matching strategy. For every
candidate vector, the algorithm computes the differences for
all pixels in the block; then it counts the minimum number
of contributions to reach . Finally, the third test case
(Search & Match Wizard) combines both techniques in order to
obtain the lowest operational bound for the PDE approach with
the given set of test sequences. Such Wizards require, in order
to be implemented, two successive phases: in the first, data
about the optimal searching (matching) order are collected; in
the second, such data are used to find the lowest operational
bound.

The performance bounds of PDE are measured as the average
number of pixels per macroblock used to probe the candidate

218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

Fig. 4. Checked pixels (for each sequence) for Wizards and SpiralPDE.

vector; this metric is independent of the actual hardware archi-
tecture on which the algorithm is implemented. Encoding time
is not considered because significant computational overheads
are required to find the tight constraints explained above.

Fig. 4 reports the average number of checked pixels per block
for the three test cases and for SpiralPDE with different video
sequences (Table II contains a description of the sequences).
The value reported for the Search & Match Wizard is the ac-
tual lowest bound for the average number of checked pixels per
block in the PDE full-search lossless approach from an opera-
tional point of view (i.e., for the given set of test sequences).
Fig. 5 shows the same information normalized on the perfor-
mances of SpiralPDE for each tested sequence. Finally, Table IV
reports the average and standard deviations of the percentage of
speedup with respect to SpiralPDE for all tested sequences. It is
worth noting that the improvement margin is extremely small
for the searching process; instead, the matching process is a
promising field of research that can lead to 70% of improve-
ment of the motion estimation with respect to SpiralPDE.

C. Performance Analysis

Finally, Fig. 6 compares the number of checked pixels (av-
eraged on all tested sequences) for all algorithms. Values for
Search & Match Wizard are taken from Section IV-B. The range
of values is from 1 to 256. As can be seen in the figure, given

Fig. 5. Reduction of the number of checked pixels for each sequence with
Wizards. Reduction is expressed as the fraction of checked pixels with respect
to SpiralPDE.

TABLE IV
CHECKED PIXEL REDUCTION (ON ALL SEQUENCES) FOR WIZARDS IN

PERCENTAGE NORMALIZED ON SPIRALPDE. MEAN VALUE AND STANDARD

DEVIATION (IN BRACKETS) ARE REPORTED FOR EACH MEASURE

the ideal Search & Match Wizard, the FFSSG algorithm features
slightly less than half of the possible gain (in pixel) with respect
to SpiralPDE. The other algorithms always perform worse.

Table V reports the values of the normalized performance
metric defined as

pixels pixels

pixels pixels
(13)

where represents the algorithm.
Results reported in Table V confirm that the FFSSG and

FFSSD algorithms represent two efficient methods for fast
full-search lossless motion estimation. Pixel reduction results
and CPU total encoding times show that FFSSG is a promising
method, even if there are still great possibilities before reaching
the operational limits of PDE. Moreover, FFSSG and FFSSD
can also be joined with algorithms based on SEA to further
improve performances.

MONTRUCCHIO AND QUAGLIA: NEW SORTING-BASED LOSSLESS MOTION ESTIMATION ALGORITHMS 219

Fig. 6. Checked pixel (mean value) for all tested sequences for Search &
Match Wizard, FFSSD, FFSSG, P4, SPD, and SpiralPDE.

TABLE V
�x FOR SPD, P4, FFSSD, AND FFSSG ALGORITHMS. DATA ARE

COMPUTED USING VALUES REPORTED IN FIG. 6

V. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed distortion behavior from local
information using the Taylor series expansion. We have also
shown that our analysis can comprise other similar methods (in
particular, but not only [58]) based on matching strategy im-
provement. In particular, we have indicated that ordering by dis-
tortion of the central test block is a correct alternative to gradient
methods, since distortion of this block represents the first order
of the Taylor expansion of the distortion.

We have then presented two new full-search (lossless), fast
matching, block-motion estimation algorithms, using a PDE ap-
proach, namely FFSSD and FFSSG. They aim at quickly dis-
carding invalid candidate vectors by starting SAD computation
from those pixel positions that give the highest contributions.
Pixel positions are sorted according to some features of the
pixels in the center of the search window. FFSSD sorts pixel po-
sitions according to the magnitude of pixel-to-pixel differences.
FFSSG uses the gradient magnitude between adjacent pixels;
gradient is computed on eight directions while previous algo-
rithms used a simpler gradient formulation. Sorting is performed
using a technique having linear complexity.

The proposed algorithms perform well in comparison with
other existing FS algorithms. In particular, the computational
gain of FFSSG with respect to the SpiralPDE algorithm has a
mean value of 30%, with a peak value of about 40%, while total
CPU encoding time is reduced by about 20%, with a peak value
of about 25% (as reported in Table III). FFSSD and FFSSG are
also independent of methods based on SEA and can be com-
bined with them to improve global speedup.

Finally, we have presented an operational study (using test
sequences) of the bounds and potentialities of the PDE tech-
nique. This study has indicated that SpiralPDE achieves perfor-
mances which are very close to experimental lower bound in the
search phase, while there is still an improvement margin on the
matching phase. FFSSD and FFSSG achieve interesting results,
significantly approaching this margin.

Future work will aim to further improve the matching
strategy, especially in the directions depicted in Section III. In
particular, we aim to obtain faster implementations of FFSSD
and FFSSG to exploit the full potential of these algorithms.

ACKNOWLEDGMENT

The authors would like to thank Prof. P. Montuschi for his
comments and fruitful suggestions.

REFERENCES

[1] J. K. Aggarwal and N. Nandhakumar, “On the computation of motion
from sequences of images–A review,” Proc. IEEE, vol. 76, no. 8, pp.
917–935, Aug. 1988.

[2] F. Dufaux and F. Moscheni, “Motion estimation techniques for digital
TV: A review and a new contribution,” Proc. IEEE, vol. 83, no. 6, pp.
858–876, June 1995.

[3] C. Stiller and J. Konrad, “Estimating motion in image sequences,” IEEE
Signal Process. Mag., vol. 16, no. 4, pp. 70–91, Jul. 1999.

[4] MPEG-1 Coding of Moving Pictures and Associated Audio for Digital
Storage Media at Up to About 1.5 Mb/s, ISO/IEC 11 172, 1993.

[5] MPEG-2 Generic Coding of Moving Pictures and Associated Audio In-
formation, ISO/IEC 13 818, 1996.

[6] MPEG-4—Information Technology—Coding of Audio-Visual Ob-
jects—Part 2: Visual, ISO/IEC 14 496-2, 2000.

[7] “Video Codec for Audiovisual Services at p� 64 kbits,” International
Telecommunications Union, ITU-T Recommendation H.261, 1993.

[8] “Video Coding for Low Bitrate Communication,” International
Telecommunications Union, ITU-T Rec-ommendation H.263, 1998.

[9] “Joint Final Committee Draft (jfcd) of Joint Video Specification (itu-t
rec. h.264 – iso/iec 14 496-10 avc),” Joint Video Team (JVT) of ISO/IEC
MPEG & ITU-T VCEG, Doc. JVT-D157, 2002.

[10] S. M. Akramullah, I. Ahmad, and M. L. Liou, “Optimization of h.263
video encoding using a single processor computer: Performance trade-
offs and benchmarking,” IEEE Trans. Circuits Syst. Video Technol., vol.
11, no. 8, pp. 901–915, Aug. 2001.

[11] “ITU-T Recommendation H.263 Software Implementation,” Digital
Video Coding Group, Telenor R&D, 1995.

[12] S. Eckart and C. Fogg, “ISO/IEC MPEG-2 software video codec,” in
Proc. SPIE, vol. 2419, 1995, pp. 100–118.

[13] Y.-L. Chan and W.-C. Siu, “An efficient search strategy for block motion
estimation using image features,” IEEE Trans. Image Process., vol. 10,
no. 8, pp. 1223–1238, Aug. 2001.

[14] R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol.
4, no. 4, pp. 438–442, Aug. 1994.

[15] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol.
6, no. 3, pp. 313–317, Jun. 1996.

[16] J. Lu and M. L. Liou, “A simple and efficient search algorithm for block-
matching motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 7, no. 2, pp. 429–433, Apr. 1997.

[17] L.-K. Liu and E. Feig, “A block-based gradient descent search algorithm
for block motion estimation in video coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 4, pp. 419–422, Aug. 1996.

[18] O. T.-C. Chen, “Motion estimation using a one-dimensional gradient
descent search,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no.
4, pp. 608–616, Jun. 2000.

[19] K. H.-K. Chow and M. L. Liou, “Genetic motion search algorithm for
video compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 3,
no. 6, pp. 440–445, Dec. 1993.

[20] S. Li, W.-P. Xu, H. Wang, and N.-N. Zheng, “A novel fast motion esti-
mation method based on genetic algorithm,” in Proc. ICIP, Oct. 1999,
pp. 66–69.

[21] M. Mattavelli and G. Zoia, “Vector-tracing algorithms for motion es-
timation in large search windows,” IEEE Trans. Circuits Syst. Video
Technol., vol. 10, no. 8, pp. 1426–1437, Dec. 2000.

[22] M. R. Pickering, J. F. Arnold, and M. R. Frater, “An adaptive search
length algorithm for block matching motion estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 7, no. 6, pp. 906–912, Dec. 1997.

[23] S. Marlow, J. Ng, and C. Mc Ardle, “Efficient motion estimation using
multiple log searching and adaptive search windows,” in Proc. Image
Process. Applicat., Jul. 1997, pp. 214–218.

[24] B. C. Song and J. B. Ra, “A fast motion estimation algorithm based
on multi-resolution frame structure,” in Proc. Int. Conf. Acoust., Speech
Signal Process., Mar. 1999, pp. 3361–3364.

[25] J.-B. Xu, L.-M. Po, and C.-K. Cheung, “A new prediction model search
algorithm for fast block motion estimation,” in Proc. Int. Conf. Image
Process., Oct. 1997, pp. 610–613.

220 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

[26] Y.-T. Roan and P.-Y. Chen, “A fast search motion estimation method,”
in Proc. Int. Conf. Syst., Man Cybernet., Oct. 2000, pp. 1568–1573.

[27] , “A fuzzy search algorithm for the estimation of motion vectors,”
IEEE Trans. Broadcast., vol. 46, no. 2, pp. 121–127, Jun. 2000.

[28] J. Chalidabhongse and C. C. J. Kuo, “Fast motion vector estimation
using multiresolution-spatio-temporal correlations,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 7, no. 3, pp. 477–488, Jun. 1997.

[29] A. M. Tourapis, O. C. Au, M. L. Liou, and G. Shen, “An advanced zonal
block based algorithm for motion estimation,” in Proc. ICIP, Oct. 1999,
pp. 610–614.

[30] P.-Y. Chen and J. M. Jou, “A fast-search motion estimation method and
its VLSI architecture,” IEEE Trans. Circuits Syst. II, vol. 46, no. 9, pp.
1233–1240, Sep. 1999.

[31] J. M. Jou, P.-Y. Chen, and J.-M. Sun, “The gray prediction search al-
gorithm for block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 9, no. 6, pp. 843–848, Sep. 1999.

[32] V. G. Moshnyaga, “A new computationally adaptive formulation of
block-matching motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 11, no. 1, pp. 118–124, Jan. 2001.

[33] K. Lengwehasatit and A. Ortega, “Computationally scalable partial dis-
tance based fast search motion estimation,” in Proc. Int. Conf. Image
Process., Sep. 2000, pp. 824–827.

[34] W. Li and E. Salari, “Successive elimination algorithm for motion esti-
mation,” IEEE Trans. Image Process., vol. 4, no. 1, pp. 105–107, Jan.
1995.

[35] Y.-C. Lin and S.-C. Tai, “Fast full-search block-matching algorithm for
motion-compensated video compression,” IEEE Trans. Commun., vol.
45, no. 5, pp. 527–531, May 1997.

[36] M. Z. Coban and R. M. Mersereau, “A fast exhaustive search algorithm
for rate-constrained motion estimation,” IEEE Trans. Image Process.,
vol. 7, no. 5, pp. 769–773, May 1998.

[37] H. S. Wang and R. M. Mersereau, “Fast algorithms for the estimation of
motion vectors,” IEEE Trans. Image Process., vol. 8, no. 3, pp. 435–438,
Mar. 1999.

[38] Y. Noguchi, J. Furukawa, and H. Kiya, “A fast full search block matching
algorithm for MPEG-4 video,” in Proc. ICIP, Oct. 1999, pp. 61–65.

[39] T. M. Oh, Y. R. Kim, W. G. Hong, and S. J. Ko, “A fast full search
motion estimation algorithm using the sum of partial norms,” in Proc.
ICCE, Jun. 2000, pp. 236–237.

[40] H. A. Mahmoud and M. Bayoumi, “A new block-matching motion es-
timation algorithm based on successive elimination,” in Proc. Int. Conf.
Image Process., Sep. 2000, pp. 608–611.

[41] T. Wiegand, X. Zhang, and B. Girod, “Long-term memory motion-com-
pensated prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,
no. 1, pp. 70–84, Feb 1999.

[42] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive elim-
ination algorithm for block matching motion estimation,” IEEE Trans.
Image Process., vol. 9, no. 3, pp. 501–504, Mar. 2000.

[43] L.-C. Chang, K.-L. Chung, and T.-C. Yang, “An improved search algo-
rithm for motion estimation using adaptive search order,” IEEE Signal
Process. Lett., vol. 8, no. 5, pp. 129–130, May 2001.

[44] M. Brünig and W. Niehsen, “Fast full-search block matching,” IEEE
Trans. Circuits Syst. Video Technol., vol. 11, no. 2, pp. 241–247, Feb.
2001.

[45] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block
motion vectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no.
2, pp. 148–157, Apr. 1993.

[46] K. T. Choi, S. C. Chan, and T. S. Ng, “A new fast motion estimation
algorithm using hexagonal subsampling pattern and multiple candidates
search,” in Proc. Int. Conf. Image Process., Sep. 1996, pp. 497–500.

[47] Y.-L. Chan and W.-C. Siu, “New adaptive pixel decimation for block
motion vector estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 1, pp. 113–118, Feb. 1996.

[48] , “A new block motion vector estimation using adaptive pixel dec-
imation,” in Proc. ICASSP, May 1995, pp. 2257–2260.

[49] Y.-L. Chan, W.-L. Hui, and W.-C. Siu, “A block motion vector estima-
tion using pattern based pixel decimation,” in Proc. ISCAS, Jun. 1997,
pp. 1153–1156.

[50] Y. Wang, Y. Wang, and H. Kuroda, “A globally adaptive pixel-decima-
tion algorithm for block-motion estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 10, no. 6, pp. 1006–1011, Sep. 2000.

[51] A. C. K. Ng and B. Zeng, “A new fast motion estimation algorithm
based on search window sub-sampling and object boundary pixel block
matching,” in Proc. ICIP, Oct. 1998, pp. 605–608.

[52] F. H. Cheng and S. N. Sun, “New fast and efficient two-step search al-
gorithm for block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 9, no. 7, pp. 977–983, Oct. 1999.

[53] C. K. Cheung and L. M. Po, “Normalized partial distortion search al-
gorithm for block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 10, no. 3, pp. 417–422, Apr. 2000.

[54] C.-H. Cheung and L.-M. Po, “A fast block motion estimation using pro-
gressive partial distortion search,” in Proc. Int. Symp. Intelligent Multi-
media, Video Speech Process., May 2001, pp. 506–509.

[55] K. Lengwehasatit and A. Ortega, “Probabilistic partial-distance fast
matching algorithms for motion estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 11, no. 2, pp. 139–152, Feb. 2001.

[56] D. Quaglia and B. Montrucchio, “Sobol partial distortion algorithm for
fast full search in block motion estimation,” in Proc. 6th Eurographics
Workshop Multimedia, Sep. 2001, pp. 77–84.

[57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical Recipes in C : The Art of Scientific Computing, 2nd ed. Cam-
bridge, U.K.: Cambridge Univ. Press, 1993.

[58] J. N. Kim and T. S. Choi, “Adaptive matching scan algorithm based
on gradient magnitude for fast full search in motion estimation,” IEEE
Trans. Consumer Electron., vol. 45, no. 3, pp. 762–772, Aug. 1999.

[59] , “A fast full-search motion-estimation algorithm using representa-
tive pixels and adaptive matching scan,” IEEE Trans. Circuits Syst. Video
Technol., vol. 10, no. 7, pp. 1040–1048, Oct. 2000.

[60] J. N. Kim, S.-C. Byun, and B.-H. Ahn, “Fast full search motion esti-
mation algorithm using various matching scans in video coding,” IEEE
Trans. Syst., Man, Cybern. C, vol. 31, no. 4, pp. 540–548, Nov. 2001.

[61] J. N. Kim, S. C. Byun, Y. H. Kim, and B. H. Ahn, “Fast full search mo-
tion estimation algorithm using early detection of impossible candidate
vectors,” IEEE Trans. Signal Process., vol. 50, no. 9, pp. 2355–2365,
Sep. 2002.

[62] R. C. Gonzales and R. E. Woods, Digital Image Processing. Reading,
MA: Addison-Wesley, 1992.

[63] J. N. Kim and B. H. Ahn, “Lossless computational reduction of full
search algorithm in motion estimation using appropriate matching unit
from image localization,” in Proc. Int. Conf. Inform. Technol.: Coding
and Computing, Apr. 2001, pp. 447–451.

[64] H. G. Musmann, P. Pirsch, and H. J. Grallert, “Advances in picture
coding,” Proc. IEEE, vol. 73, no. 4, pp. 523–548, Apr. 1985.

[65] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms. Cambridge, MA/New York: MIT Press/ McGraw-Hill, 1990.

Bartolomeo Montrucchio (M’02) received the M.S.
degree in electronic engineering and the Ph.D. degree
in computer engineering from Politecnico di Torino,
Torino, Italy, in 1998 and 2002, respectively.

He is currently an Assistant Professor of computer
engineering with the Department of Computer
Engineering, Politecnico di Torino. His current re-
search interests include image analysis and synthesis
techniques, motion estimation techniques, medical
imaging and scientific visualization.

Prof. Montrucchio is a member of the IEEE Cir-
cuits and Systems Society and of the Eurographics Association.

Davide Quaglia (SM’00–M’04) received the M.S.
and Ph.D. degrees from Politecnico di Torino, Torino,
Italy, in 1999, and 2003, respectively, both in com-
puter engineering.

He is currently with the Department of Computer
Engineering, Politecnico di Torino, with a research
grant supported by CERCOM, the Center for Wire-
less Multimedia Communications of Torino. His cur-
rent research interests include video coding, robust
delivery of multimedia signals over packet networks,
motion estimation techniques, wireless networks, and

signal processing for impaired-people applications.
Dr. Quaglia is a member of the IEEE Signal Processing and Engineering in

Medicine and Biology Societies. In 2002, he was the chairman of the IEEE
Student Branch of Politecnico di Torino.

	toc
	New Sorting-Based Lossless Motion Estimation Algorithms and a Pa
	Bartolomeo Montrucchio, Member, IEEE, and Davide Quaglia, Member
	I. I NTRODUCTION

	TABLE I N OTATION T ABLE
	II. B ACKGROUND
	A. Fast Searching
	1) Lossy: There are many lossy motion estimation algorithms whic
	2) Lossless: Lossless fast searching, as well as previous algori

	B. Fast Matching
	1) Lossy: Fast matching approaches aim at reducing SAD computati
	2) Lossless: The lossless fast matching approach can be very att

	III. P ROPOSED A LGORITHMS
	A. Taylor Series Expansion of the Distortion
	B. FFSSD
	C. FFSSG
	D. Sorting

	TABLE II M OTION P ICTURE S EQUENCES U SED D URING T ESTS
	IV. E XPERIMENTAL R ESULTS AND R EMARKS
	A. FFSSD and FFSSG

	Fig.€1. Average number (for each sequence) of checked pixels per
	Fig.€2. Reduction of the number of checked pixels for each seque
	TABLE III C HECKED P IXEL R EDUCTION AND E NCODING T IME S PEEDU
	Fig.€3. Reduction of the encoding time for each sequence with SP
	B. Experimental PDE Analysis

	Fig.€4. Checked pixels (for each sequence) for Wizards and Spira
	C. Performance Analysis

	Fig.€5. Reduction of the number of checked pixels for each seque
	TABLE IV C HECKED P IXEL R EDUCTION (ON A LL S EQUENCES) FOR W
	Fig.€6. Checked pixel (mean value) for all tested sequences for
	TABLE V $\Delta x_{\%}$ FOR SPD, P4, FFSSD, AND FFSSG A LGORITHM
	V. C ONCLUSION AND F UTURE W ORK
	J. K. Aggarwal and N. Nandhakumar, On the computation of motion
	F. Dufaux and F. Moscheni, Motion estimation techniques for digi
	C. Stiller and J. Konrad, Estimating motion in image sequences,

	MPEG-1 Coding of Moving Pictures and Associated Audio for Digita
	MPEG-2 Generic Coding of Moving Pictures and Associated Audio In
	MPEG-4 Information Technology Coding of Audio-Visual Objects Par
	Video Codec for Audiovisual Services at ${\rm p}\times\,$ 64 kbi
	Video Coding for Low Bitrate Communication, International Teleco
	Joint Final Committee Draft (jfcd) of Joint Video Specification
	S. M. Akramullah, I. Ahmad, and M. L. Liou, Optimization of h.26

	ITU-T Recommendation H.263 Software Implementation, Digital Vide
	S. Eckart and C. Fogg, ISO/IEC MPEG-2 software video codec, in P
	Y.-L. Chan and W.-C. Siu, An efficient search strategy for block
	R. Li, B. Zeng, and M. L. Liou, A new three-step search algorith
	L. M. Po and W. C. Ma, A novel four-step search algorithm for fa
	J. Lu and M. L. Liou, A simple and efficient search algorithm fo
	L.-K. Liu and E. Feig, A block-based gradient descent search alg
	O. T.-C. Chen, Motion estimation using a one-dimensional gradien
	K. H.-K. Chow and M. L. Liou, Genetic motion search algorithm fo
	S. Li, W.-P. Xu, H. Wang, and N.-N. Zheng, A novel fast motion e
	M. Mattavelli and G. Zoia, Vector-tracing algorithms for motion
	M. R. Pickering, J. F. Arnold, and M. R. Frater, An adaptive sea
	S. Marlow, J. Ng, and C. Mc Ardle, Efficient motion estimation u
	B. C. Song and J. B. Ra, A fast motion estimation algorithm base
	J.-B. Xu, L.-M. Po, and C.-K. Cheung, A new prediction model sea
	Y.-T. Roan and P.-Y. Chen, A fast search motion estimation metho
	J. Chalidabhongse and C. C. J. Kuo, Fast motion vector estimatio
	A. M. Tourapis, O. C. Au, M. L. Liou, and G. Shen, An advanced z
	P.-Y. Chen and J. M. Jou, A fast-search motion estimation method
	J. M. Jou, P.-Y. Chen, and J.-M. Sun, The gray prediction search
	V. G. Moshnyaga, A new computationally adaptive formulation of b
	K. Lengwehasatit and A. Ortega, Computationally scalable partial
	W. Li and E. Salari, Successive elimination algorithm for motion
	Y.-C. Lin and S.-C. Tai, Fast full-search block-matching algorit
	M. Z. Coban and R. M. Mersereau, A fast exhaustive search algori
	H. S. Wang and R. M. Mersereau, Fast algorithms for the estimati
	Y. Noguchi, J. Furukawa, and H. Kiya, A fast full search block m
	T. M. Oh, Y. R. Kim, W. G. Hong, and S. J. Ko, A fast full searc
	H. A. Mahmoud and M. Bayoumi, A new block-matching motion estima
	T. Wiegand, X. Zhang, and B. Girod, Long-term memory motion-comp
	X. Q. Gao, C. J. Duanmu, and C. R. Zou, A multilevel successive
	L.-C. Chang, K.-L. Chung, and T.-C. Yang, An improved search alg
	M. Brünig and W. Niehsen, Fast full-search block matching, IEEE
	B. Liu and A. Zaccarin, New fast algorithms for the estimation o
	K. T. Choi, S. C. Chan, and T. S. Ng, A new fast motion estimati
	Y.-L. Chan and W.-C. Siu, New adaptive pixel decimation for bloc
	Y.-L. Chan, W.-L. Hui, and W.-C. Siu, A block motion vector esti
	Y. Wang, Y. Wang, and H. Kuroda, A globally adaptive pixel-decim
	A. C. K. Ng and B. Zeng, A new fast motion estimation algorithm
	F. H. Cheng and S. N. Sun, New fast and efficient two-step searc
	C. K. Cheung and L. M. Po, Normalized partial distortion search
	C.-H. Cheung and L.-M. Po, A fast block motion estimation using
	K. Lengwehasatit and A. Ortega, Probabilistic partial-distance f
	D. Quaglia and B. Montrucchio, Sobol partial distortion algorith
	W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne
	J. N. Kim and T. S. Choi, Adaptive matching scan algorithm based
	J. N. Kim, S.-C. Byun, and B.-H. Ahn, Fast full search motion es
	J. N. Kim, S. C. Byun, Y. H. Kim, and B. H. Ahn, Fast full searc
	R. C. Gonzales and R. E. Woods, Digital Image Processing . Readi
	J. N. Kim and B. H. Ahn, Lossless computational reduction of ful
	H. G. Musmann, P. Pirsch, and H. J. Grallert, Advances in pictur
	T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

