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Abstract— This paper describes an overview of the UTDrive
project. UTDrive is part of an on-going international collabo-
ration to collect and research rich multi-modal data recorded
for modeling driver behavior for in-vehicle environments. The
objective of the UTDrive project is to analyze behavior while
the driver is interacting with speech-activated systems or
performing common secondary tasks, as well as to better
understand speech characteristics of the driver undergoing
additional cognitive load. The corpus consists of audio, video,
gas/brake pedal pressure, forward distance, GPS information,
and CAN-Bus information. The resulting corpus, analysis, and
modeling will contribute to more effective speech interactive
systems with are less distractive and adjustable to the driver’s
cognitive capacity and driving situations.

I. INTRODUCTION

Several studies have shown that drivers can achieve better
and safer driving performance while using speech interactive
systems to operate an in-vehicle system compared to manual
interfaces [2], [6]. Although providing better interfaces, op-
erating a speech interactive system will still divert a driver’s
attention away from his or her primary driving task with
varying degrees of distraction. Ideally, drivers should pay
primary attention to driving, rather than any secondary tasks.
With current life styles and advanced in-vehicle technology,
it is inevitable that drivers will perform secondary tasks, or
operate driver assistance and entertainment systems while
driving. In general, the common tasks of operating a speech
interactive system in a driving environment includes (1) cell-
phone dialing, (2) navigation/destination interaction, (3) e-
mail processing, (4) music retrieval, and (5) generic com-
mand and control or in-vehicle telematics system. If such
secondary tasks or distractions lie within the limit of the
amount of spare cognitive load for the driver, he or she can
still focus on driving. Therefore, the design of safe speech
interactive systems for in-vehicle environments should take
into account the factors from the driver’s cognitive capacity,
driving skills, and the proficiency degree of the cognitive
load of the applications. With knowledge of such factors,
an effective driver behavior model with real-time driving
information, can be integrated into a smart vehicle to support
or control driver assistance systems to manage driver dis-
tractions (e.g., suspend applications in a situation of heavy
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driving workload).
Another aspect presents in a car environment is a variety

of background noise effects the quality of the input acoustic
signal of the speech interface. More importantly, drivers have
to modify their vocal effort to overcome noise levels in
their ears, namely the Lombard effect [11]. Such effects on
speech production (e.g., speech under stress) can degrade
the performance of automatic speech recognition (ASR)
system more than the ambient noise itself [7], [5]. At a
higher level, interacting with an automatic speech recognition
(ASR) system when focused on driving may result in a
speaker missing audio prompts, using incomplete grammar,
adding extra pauses or fillers, or extended time delays in
the dialog system. Desirable dialog management should be
able to employ multi-modal information to handle errors and
adapt its context depend on the driving situations.

Building effective driver behavior recognition frameworks
requires a thorough understanding of human behavior and
the construction of a mathematical model capable of both
explaining and predicting the drivers’ behavioral character-
istics [12]. In recent studies, several researchers have defined
different performance measures to understand driving charac-
teristics and to evaluate their studies. Such measures include
driving performance, driver behavior, task performance, etc.
Driving performance measures consist of driver inputs to the
vehicle or measures of how well the vehicle was driven along
its intended path [1]. Driving performance measures can be
defined by longitudinal velocity and acceleration, standard
deviation of steering-wheel angle and its velocity, standard
deviation of the vehicle’s lateral position (lane keeping),
mean following distance, response time to brake, etc. Driver
behavior measures can be defined by glance time, number
of glances, awareness of drivers, etc. Task performance
measures can be defined by the time to complete task and
the quality of the completed task (e.g., do drivers acquire
information they need from cell-phone calling). Therefore,
multi-modal data acquisition is very important to these
studies.

UTDrive is part of three-year NEDO-supported inter-
national collaboration between universities in Japan, Italy,
Singapore, Turkey, and USA. The UTDrive (USA) project
has been designed specifically to:

• collect rich multi-modal data recorded in a car envi-
ronment (i.e., audio, video, gas/brake pedal pressures,
forward distance, GPS information, and CAN-Bus in-
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formation including vehicle speed, steering angle, pedal
status),

• assess the effect of speech interactive system on driver
behavior,

• formulate better algorithms to increase accuracy for in-
vehicle ASR systems,

• design dialog management which is capable of adapting
itself to support a driver’s cognitive capacity,

• develop a framework for smart inter-vehicle communi-
cations.

The results of this project will help to develop a framework
for building effective models of driver behavior and driver-
to-machine interactions for safe driving. In real driving
situations, even a small improvement in cognitive driver load
management can improve and reduce accidents.

II. UTDRIVE DATA AND EQUIPMENT

In this section, we present an overview of the hardware
setup and collection protocol for UTDrive.

A. Audio
A custom designed five microphone array with omni-

directional microphones was installed on top of the wind-
shield next to the sunlight visors to capture audio signals
inside the vehicle. Since there are various kinds of car
background noise (e.g., A/C, engine, turn-signals, vehicles
passing) presented in driving environments, the microphone
array configuration will allow us to apply beam-forming
algorithms to enhance the quality of input speech signals [8],
[9], [15]. In our setup, each microphone was mounted in a
small movable box individually attached to an optical rail,
as shown in Fig. 1. This particular design allows the spacing
between each microphone of the array to be adjustable across
the width of the windshield (e.g., linear, logarithmic, etc.).
One of our preliminary studies showed that logarithmic scale
outperformed linear scale in terms of SNR improvement for
some noise conditions, with a basic delay-and-sum beam-
forming processing. The optimization of array configuration
and beam-former processing is another challenge which is
being considered.

In addition, the driver speech signal is also captured by a
close-talk microphone (Shure Beta-54) which was connected
to a phantom power supply. This microphone provides the
reference speech of the speaker, and allows the driver to
move their head freely while they are driving the vehicle.

B. Video
Two Firewire cameras are used to capture visual informa-

tion of driver’s face region and front-view of the vehicle, as
shown in Fig. 2. Real-time computer vision is an important
component to understand driver behavior (e.g., face and eyes
detection to measure driver glances). In addition, studies
have shown that combining audio and visual information of
driver can improve ASR accuracy of low-SNR speech [3],
[16]. Integrating both visual and audio contents allows us
to reject unintended speech prior to speech recognition
and significantly improve in-vehicle human-machine dialog

Fig. 1. Custom-designed adjustable-spaced microphone array.

system performance [16] (e.g., determining the movement of
the driver’s mouth, body, and head positions).

Fig. 2. Sample of two synchronous video streams (left: front view, right:
driver).

C. CAN-Bus Information
As automotive electronics advance and government re-

quired standards evolve, control devices that meet these
requirements have been embracing modern vehicle design
resulting in the deployment of a number of these electronic
control systems. The Controller Area Network (CAN) is a
serial, asynchronous, multi-master communications protocol
suited for networking vehicle’s electronic control systems,
sensors, and actuators. The CAN-Bus signals contain real-
time vehicle information in the form of messages integrating
many modules, which interact with the environment and
process high and low speed information. In the UTDrive
project, we obtain the CAN signals from the OBD-2 port
through the 16 points J1962. Messages captured from CAN
while the driver is operating the vehicle (e.g., steering wheel
angle, brake and gas pedals, vehicle speed, engine speed, and
vehicle acceleration) are desired to study driver behavior.

Studies have shown that driver behavior can be modeled
and predicted by the patterns of driver’s control of steer-
ing angle, steering velocity, car velocity, and car accelera-
tion [13], as well as driver identity itself [4], [14].

D. Transducers and Extensive Components
In addition, the following transducers and sensors are

included into the UTDrive framework:
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• Brake and gas pedal pressure sensors: provides continu-
ous measurement of pressure, compensating the binary
information (on/off) obtained from CAN-Bus.

• Distance sensor: provides the forward distance to the
next vehicle.

• GPS: provides standard time and position of vehicle.
• Hands-free car kit: provides safety during data col-

lection and audio data of both audio channels to be
recorded.

• Biometrics: heart-rate and blood pressure measurement.

E. Data Acquisition Unit (DAC)
The key component of multi-modal data collection is

synchronization of all data. In our data collection, we use
a fully integrated commercial data acquisition unit (DAC).
With a very high sampling rate of 100 MHz, DAC is capable
of synchronously recording multi-range input data (i.e., 16
analog inputs, 2 CAN-Bus interfaces, 8 digital inputs, 2
encoders, and 2 video cameras), and yet allows sampling
rate for each data to be set individually. DAC can export
all recording data as a video clip in one output screen, or
individual data in its proper format (e.g., .wav, .avi, .txt, .mat,
etc.) with synchronous time stamps. The output video stream
can be encoded to reduce its size, and then transcribed and
segmented with an annotation tool. Fig. 3 shows the UTDrive
vehicle and its core components.

In order to avoid signal interference, the power cables and
the signal cables were wired separately on both sides of the
car. The data acquisition unit is mounted on a customized
platform on the backseat behind the driver. The power
inverter and supplier units are designed to be housed in the
trunk space.

III. DATA COLLECTION PROCESS

For data collection, each participant will drive the vehicle
using two different routes in the neighborhood areas of the
UTD campus (Richardson-Dallas, TX); one route represents
a residential area environment and the second route repre-
sents a business district environment. Each route takes 10-
15 minutes to complete one round. The participant drives
the vehicle two rounds for each route, the first round is
normal driving and second round is driving and performing
some secondary tasks. Due to safety concerns, the assigned
secondary tasks are common tasks with mild to moderate
degrees of cognitive load. Consequently, drivers use a hands-
free car kit when they interact with dialog systems on the
cell-phone. Participants can refuse to perform any tasks
which they do not feel comfortable in using during driving.

The main secondary tasks are to:
• Interact with commercial ASR dialog systems. The

drivers call an airline’s flight connection system to
check the departure/arrival gates of particular flights,
and call a voice portal to obtain information depending
on personal interests (e.g., forecast weather at arrival
city of their trips).

• Read signs, street names, license plate numbers, etc.
• Tune radio, Insert a CD, Select CD track.

• Have general conversation with passenger.
• Report driving activities.

In order to acquire session-to-session variability, each subject
is encouraged to participate in the driving for two more
times with at least one week separation between sessions.
Currently, the UTDrive plan will include 100–300 drivers
completing 1-2 routes over the next six months. Results
will be presented from these subjects. Sample resulting data
streams from the integrated collection platform are shown in
Fig. 3.

IV. INTER-VEHICLE COMMUNICATIONS

Another aspect of the UTDrive project is the communica-
tions between vehicles. Data collected in the vehicle can be
exchanged with the other vehicles, by means of a wireless
network, in order to support safety applications. Inter-vehicle
communications of driving behavior and vehicle status can
avoid collision between vehicles at the intersections and
parking lots (e.g., restricting back off distance if another car
will not stop), or allow vehicles to send requests for help or
alert other vehicles about high risk of accidents using voice
over IP (VoIP) communications.

Inter-vehicle communications are challenging due to the
high variability of the wireless channel conditions and the
topology of the network. The wireless channel, in fact, is
affected by noise, refraction, reflection, and attenuation of
the electromagnetic waves, which can generate packet losses
during transmission. The variation of the speed and the route
of the vehicles, instead, produces changes in the topology of
the network, and requires new routing protocols.

In order to develop safe applications based on VoIP com-
munications, we evaluated the performance of one-hop inter-
vehicle networks transmitting speech over an IEEE802.11b
network. In particular, we studied the scenario in which a
car is parked near the roadside and is sending a VoIP help
request to another car driving in close proximity.

In our experiments, we used two Cisco3200 wireless
routers with a 6 dBi gain dipole antenna, a transmission
power of 100 mW and a CSMA/CA data retry limit of 64.
The parked car was at the edge of a parking lot, while the
second car was driven on the UTD campus between parking
spaces and buildings. Other interfering wireless networks
were present on campus. In order to send data on the
network, we used a UDP-based traffic generator sending 5-
minutes VoIP flows at the typical bit rates of GSM AMR,
iLBC, G729, and MELP speech coders with concurrent video
flows at 500 kb/s. The results of the collected data, in terms
of Packet Loss Rate (PLR), are shown in Table I. Our
experimental results show that the packet loss rates for the
video and speech flows are comparable, while the packet
loss rates among all the speech flows decrease when the
dimension of the packets decreases and the speech frame
length increases.

V. CONCLUSION AND FUTURE WORK

This paper has described an overview of the UTDrive
project and vehicle setup for real-time multi-modal data
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Fig. 3. UTDrive setup and sample synchronous data (two video streams, three audio streams, gas and brake pedal pressure).

TABLE I
PACKET LOSS RATES FROM DIFFERENT SPEECH CODERS.

VoIP Bit Rate Speech PLR Video PLR Speech Frame
Length (ms)

iLBC 13.33 kb/s 14.23% 14.01% 30
iLBC 15.20 dB/s 20.70% 20.84% 20

GSM AMR 12.2 kb/s 16.80% 17.62% 20
GSM AMR 7.4 kb/s 14.27% 14.84% 20

GSM AMR 4.75 kb/s 15.86% 16.38% 20
G.729 8 kb/s 20.34% 20.53% 10

MELP 2.4 kb/s 13.78% 13.62% 22.5

acquisition in a real-driving scenario. The objective of our
project is to develop mathematical models that are able to
predict driver behavior and performance while using speech
interactive systems, as well as improve speech interactive
systems to accomplish reduced distraction/improved safety
for in-vehicle systems. An up-to-date summary of data
collection and driver modeling will be presented at the
meeting with further details and discussion on international
collaboration, exchange, and transcription standard.
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