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Abstract - Devices for stereoscopic vision are gaining increasing diffusion,  

but their usage is mostly oriented toward entertainment. A prototype based  

on consumer  devices  and open software  to  achieve  low-cost  3D-video-

supported  interactive  control  is  presented  here.  This  research  could  

stimulate  the  study  and  implementation  of  low-cost  general-purpose  

systems that could be used on a wide spectrum of applications, including  

remote  operation,  education,  training,  and  surveillance.  There  are  two  

related Web extras that provide supplemental material.

For decades, researchers have been experimenting with real-time multimedia services with 3D technology 
support. Such services have been used in specialized contexts—such as in the entertainment industry, for 
teleoperation,  and  in  critical  applications—but  have  mostly relied  on special-purpose hardware.  Given 
recent advances in 3D technology and the increasing diffusion of low-cost 3D devices in the consumer 
market—including 3D TVs, mobile phones, and gaming devices—wouldn’t  it  be great if we could use 
these ordinary devices to build low-cost 3D communication systems?

We started this line of research in 2012, motivated by the need to add a low-cost stereoscopic remote  
control module in a research project developing an open source framework for real-time teleoperation. In 
fact, researchers have demonstrated that teleoperation is an application area that stands to benefit greatly 
from stereoscopic  vision (see  the “Related  Research  in  3D Remote  Control”  sidebar).  3D images  can  
enable better perception of depth characteristics in the environment—especially in terms of the relative 
object  distance—thus  enhancing  precision  and  reducing  the  time  needed  to  complete  tasks  involving 
remote robot piloting and manipulation. Of course, for each type of application, it’s necessary to verify that 
the achievable quality-of-experience—which might be bounded by the limited capabilities of consumer-
grade hardware—meets the application constraints and user expectations. 

Our goal was to study and design a 3D teleoperation prototype offering good performance at a relatively 
low cost (less than US$1,500).  Here,  we highlight the issues involved in designing such a system and 
present a prototype that demonstrates the feasibility of the low-cost approach, showing its cost-performance 
tradeoff.  The results  pave  the way for  the development  of  many new interactive  real-time systems in  
different application domains.

Related Research in 3D Remote Control
The use of 3D vision for teleoperation is a very active research field,1 because it has been shown that 3D viewing technologies 
might provide users with higher depth perception. As expected, some tasks benefit more than others from a better comprehension 
of distance,2 such as teleguide and obstacle localization. However, even in demanding situations such as in emergency 
applications, teleoperation with 3D vision typically improves remote-control performance.3

John McIntire, Paul Havig, and Eric Geiselman have reviewed the literature investigating human factors that have implications 
on task performance when stereoscopic 3D displays are used.4 The tasks include judging absolute and relative distances, finding 
and identifying objects, navigating and manipulating objects in terms of position, and performing orientation and tracking.

Researchers have also investigated acquisition and visualization technologies. For example, work has shown that, using 
efficient algorithms, correctly calibrated stereoscopic images provide a guaranteed depth perception.5 Other work has assessed 
the performance achieved using different viewing technologies during remote-control operations, providing results in terms of 



usability while comparing 3D and 2D viewing, 3D and virtual-reality displays, and robot sensors.6
Studies have also addressed the problem using simulation. For example, researchers performed a pick-and-place task in a 

simulated virtual environment using three different systems: multiple 2D displays, a 3D perspective display, and a 3D stereoscopic 
display.7 Although the gain in performing simple tasks was limited, introducing a stereoscopic display resulted in better 
performances than the perspective display for highly difficult tasks.

Finally, Salvatore Livatino and Giovanni Muscato were interested in the effect of video feedback latency, so they performed 
usability studies that substituted real video images with synthetic images from robot laser data.8 The authors observed that by 
using a technique to minimize the amount of bandwidth (and delay) required for the transmission, they could significantly reduce 
the amount of time spent performing a given task, thus improving system usability.
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COTS and Open Source Solutions

To reach our goals, we focused our attention on consumer off-the-shelf (COTS) hardware and open source 
software. COTS components cost much less than dedicated hardware, but they can have (slightly) lower 
performance.

The scientific literature and open source domain offer many algorithms and reference implementations 
for problems in the fields of communication, visualization, stereoscopy, and so on. The downside of open  
source versus commercial software again relates to performance. However, with suitable modifications and 
component  selection,  open  source  software  offers  good-performance,  low-cost  solutions  that  the  final 
installer can customize to address the specific implementation and its goals.

Furthermore, while designing our system, we focused on simplicity of use and customization. We also 
wanted  to  create  an  open-platform-based  design  and  use  widespread  standards  for  coding  and 
communication. Although our current solution is only a prototype, we hope it stimulates further research  
and investments in this research area.



Architecture Design

A generic structure of a teleoperation system based on real-time 3D video feedback has two main parts: a  
mobile streaming node equipped with a stereoscopic camera, and a client application for 3D visualization 
(see Figure 1).

Figure 1. A block diagram of a 3D video transmission chain suitable for remote teleoperation systems. A  
stereoscopic camera mounted on the teleoperated machine wirelessly transmits to a receiver suitable for  
3D vision.

The transmitter node is located on the teleoperated machine so that the capture device can record the 
vision of the area from the device’s point of view. The system’s core must process the captured images so 
that a timely robust transmission can occur through a wireless channel to the remote operation side. On the  
receiver  side, the software reconstructs and renders  the 3D image from the received data on a graphic 
display device in a format suitable for stereoscopic vision. The key point for successful system operation is 
to  guarantee  low  end-to-end  latency,  which  is  a  fundamental  requisite  to  achieve  a  good  real-time 
interaction experience.1

Issues with a Consumer-Level Solution
The deployment of consumer-level  solutions for remote control 3D video systems is made difficult  by 
constraints that relate to the high cost of industrial-grade components and to the use of proprietary, closed 
systems.  As  noted  earlier,  to  enable  consumer-level  solutions  at  a  reduced  cost,  we  investigated  the 
feasibility of using COTS hardware components, integrated using open source software frameworks.  In 
doing so, we prioritized the following issues.

First, we wanted to find a mobile device with suitable resolution and highly responsive output of the 
captured images. For this reason, we excluded still-picture cameras. We also wanted to reduce the video 
encoding latency using appropriate encoding algorithms.

Next, we wanted to make the system sufficiently robust to some packet losses—an event possible in any  
communication scenario that can severely affect the user’s perceived video quality. As we will see later, 
suitable choices of encoding algorithms and related configurations can help address this issue.

Finally, we wanted to render the stereoscopic video using a technology widely supported in an open 
source environment.

Component Selection and Evaluation
The previous considerations led us to develop the building blocks of our proposed teleoperation system 
based  on  real-time  3D  video  feedback  (see  Figure  2  and  the  related  video  at 



http://youtu.be/5zApDO3wSq4, which also shows the components). 

Figure 2. System architecture and components. A mobile phone with stereoscopic capabilities wirelessly  
transmits to a computer that can render 3D video using active glasses. The total cost of the system is  
approximately US$1,500.

Our prototype includes the following five key components.

A stereoscopic camera. We used a commercially available 3D mobile phone (HTC Evo 3D) that let us 
achieve, at a moderate cost, stereoscopic vision, portability, a battery-operated power supply, and wireless 
communication.  In  field  experiments,  we  experienced  a  latency  between  150 and  200 ms  in  the  best 
conditions. This is slightly higher than the ideal requirement (less than 150 ms), but it’s probably the most  
efficient solution that the COTS market can currently provide. In fact, this loss of performance is the price 
to pay for keeping the overall system cost low. 

We also evaluated other solutions, such as 3D cameras, but the majority of them either didn’t let us 
transmit video in real-time, or the format (such as the Digital Video format) required further processing and 
thus increased system cost, complexity, and latency.

Encoding and transmission  software. We  developed  a  custom-built  open  source  encoding  and 
transmission software specifically  for  the HTC Evo 3D phone to minimize encoding and transmission 
latency.

Networking  hardware.  We  used  standard  networking  hardware—a  commercially  available  802.11 
access point for transmission over a standard Wi-Fi channel.

Receiver and decoder software. We custom built open source receiver and decoder software on top of 
the Linux OS and openGL libraries.

Stereoscopic hardware support.  We used a standard desktop computer with stereoscopic hardware 
support, including a graphic board, a monitor, and an infrared emitter device for the active glasses. The 
identified solution for supporting hardware openGL is based on an Nvidia Quadro 4000 graphics board, 
which provides a direct connection from the video card to the infrared emitter device without the need for  
specific driver support in Linux (see the specifications at www.nvidia.com/object/product-quadro-4000-
us.html). This greatly simplified the management of stereoscopic issues in the receiver but also increased 
the final system’s cost.



Alternative Solution
Because  Nvidia doesn’t  officially  support  3D visualization for  the Linux environment,  we could have 
implemented a cheaper  solution (for  approximately $900) using an experimental  driver  that’s  publicly 
available on the Internet (http://sourceforge.net/projects/libnvstusb. The driver lets you work with much 
cheaper video cards by synchronizing the infrared emitter using the USB connector. However, we didn’t  
pursue this solution, because it doesn’t currently provide stable performance.

System Implementation

Much of our time was spent developing a video transmission application that could achieve performance  
comparable to more expensive professional solutions while relying only on low-cost COTS devices. The 
application (available at http://media.polito.it/itpro) consists of both a transmitter and a receiver part. We 
implemented the video transmission on top of the Android platform (www.android.com) using both Java  
code and our optimized routines for video compression, compiled in native code to improve performance.  
To achieve maximum robustness against data loss and minimum latency, we implemented the video codec,  
which segments images in independently decodable subareas to allow pipeline processing and better error 
resilience.

Due  to  the  strict  latency  constraints,  it’s  not  possible  to  retransmit  data;  however,  encoding  and 
packetization is designed so that the content of each single packet that has been successfully received can 
be decoded and presented to the user, because no packet depends on other ones for decoding. Missing data  
is estimated using a frame-copy concealment technique. Data is sent using the standard RTP protocol2 with 
a header extension that simplifies recovery in case of packet losses.

On  the  receiver  side,  the  software  features  a  multithreaded  architecture  that  decouples  the  packet 
reception and decoding from data visualization so that  the interaction with the device-rendering engine 
doesn’t affect the time required to process the input data. For the visualization part, we used the openGL 
library  (www.opengl.org/sdk),  including  its  extension  for  stereoscopic  visualization.  Therefore,  the 
developer needs to draw data only on the correct frame buffer (left or right) and the library automatically  
handles all visualization issues, including alternating left and right views on the screen at the correct frame  
rate and synchronizing with the shutter glasses.

Our choice was to rely on open source software at the underlying level, but the whole system can be 
easily  ported  and extended to any  platform.  The transmitter  is  written  partly  in  Java  and  partly  in  C 
(compression routines), while the receiver is standard C code using sockets, threads, and openGL—a set of 
libraries available on the vast majority of platforms.

Results

We tested the system in a practical scenario designed to investigate a set of factors that could affect the 
operator’s  performance  in  remote  teleoperation—in  particular,  the  latency  of  the  video  feedback  for 
effective control and the quality of the stereoscopic images for effective 3D perception.

The  chosen  components  and  system  design  already  take  latency  and  image  size  into  account. 
Nevertheless, because these two factors conflict with each other, care should be taken to correctly balance  
the two components. For example, the more we increase image quality, the more we burden system latency  
and thus reduce usability.

Figure 3a shows the total amount of delay introduced by the different components of the communication 
chain: acquisition, processing, transmission, and rendering. First of all,  an intrinsic lower bound in the 
overall delay is given by the sum of the camera acquisition latency, the rendering screen refresh rate, and 
the network transmission time. In our setup, this delay accounted for approximately 130 ms and was the 
same for  any system configuration  we tested.  Second,  we tested whether  the time required  for  image 
compression—which depends on the device’s computational capabilities—heavily influences the maximum 
frame rate that can be achieved.



Figure  3.  System  prototype:  (left)  the  quality  versus  latency  tradeoff  in  the  test  scenario
and (right) the 3D vision prototype performing the test.

The latency measurements with the different image-quality configurations showed that the request for 
high quality strongly affects the time required for the image-compression process. This behavior limits the 
achievable  frame  rate  and,  in  turn,  increases  the  total  end-to-end  delay.  For  example,  with  a  frame  
resolution of 416 × 240 pixels, we were able to encode video at 20 to 22 frames per second, while with a  
frame resolution of 640 × 352 pixels, we achieved 14 to 18 fps; with 1,280 × 720 pixels, only 3 to 5 fps was 
possible.

We designed an experiment with the smartphone camera mounted on a radio-controlled toy car and 
asked users to perform an alignment task using the 3D vision system and the car remote controller (see 
Figure 3b and the related video at http://youtu.be/1Olg1oV2fIs).

User feedback confirmed that the frame rate allowed by the maximum resolution configuration was too 
low to effectively  drive  the  car,  because  its  overall  latency (more  than 300 ms) highly impaired  user  
reactivity to the car movements. On the contrary, users preferred the first two setups—even if the image 
quality was lower—because their latency was within 200 ms—a value still  considered satisfactory for  
interactive communications.3 In particular, because the difference in latency between the first two setups 
wasn’t really perceivable, almost all users preferred the second setup (640 × 352). However, recent findings 
suggest that further quality reductions might not significantly impair the ability to perform given tasks. 4 

This could pave the way for adaptively choosing codec and coding parameters,  thus varying quality if 
necessary, depending on the network bandwidth availability.

Moreover, we also considered the case of transmission over the wireless Internet. Experiments show that 
the system can work with the video qualities shown in Figure 3a using between 800 and 1,700 kbit/s. These  
rates have been experienced using a 3G connection with a packet loss rate lower than 1 percent. However,  
latency is approximately 80 ms higher compared to Wi-Fi, and packet-delay variation (jitter) was up to 30 
ms,  which  delays  the  visualization  of  some  frames.  Latency  has  an  impact  mainly  on  the  system’s 
perceived responsiveness, while jitter makes the video feedback subject to very short freezes that can be 
annoying.

In general, the results of the evaluation process indicate that the system can be applied in a context of 
remote teleoperation where real-time video feedback requirements can be somewhat relaxed by trading off 
costs with latency. With this setup, we expect that low-cost 3D visualization systems will become popular  
in myriad new contexts,  from domotics and disability assistance to gaming and entertainment.  Further 
studies are in development, with the aim of increasing system timeliness, even for the high-quality video 
setup.

Future work might include additional optimizations to enhance the user experience. For example, dropping 
the open source requirement in favor of proprietary software libraries will let us reduce processing time by  
exploiting specific hardware support for video acceleration. At the same time, the system’s total cost can be 
significantly reduced using much cheaper 3D video cards not yet supported by open source software.
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