
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Low-Cost 3D-Supported Interactive Control

Enrico Masala, Antonio Servetti, and Angelo Raffaele Meo

Politecnico di Torino, Italy

Abstract - Devices for stereoscopic vision are gaining increasing diffusion,

but their usage is mostly oriented toward entertainment. A prototype based

on consumer devices and open software to achieve low-cost 3D-video-

supported interactive control is presented here. This research could

stimulate the study and implementation of low-cost general-purpose

systems that could be used on a wide spectrum of applications, including

remote operation, education, training, and surveillance. There are two

related Web extras that provide supplemental material.

For decades, researchers have been experimenting with real-time multimedia services with 3D technology
support. Such services have been used in specialized contexts—such as in the entertainment industry, for
teleoperation, and in critical applications—but have mostly relied on special-purpose hardware. Given
recent advances in 3D technology and the increasing diffusion of low-cost 3D devices in the consumer
market—including 3D TVs, mobile phones, and gaming devices—wouldn’t it be great if we could use
these ordinary devices to build low-cost 3D communication systems?

We started this line of research in 2012, motivated by the need to add a low-cost stereoscopic remote
control module in a research project developing an open source framework for real-time teleoperation. In
fact, researchers have demonstrated that teleoperation is an application area that stands to benefit greatly
from stereoscopic vision (see the “Related Research in 3D Remote Control” sidebar). 3D images can
enable better perception of depth characteristics in the environment—especially in terms of the relative
object distance—thus enhancing precision and reducing the time needed to complete tasks involving
remote robot piloting and manipulation. Of course, for each type of application, it’s necessary to verify that
the achievable quality-of-experience—which might be bounded by the limited capabilities of consumer-
grade hardware—meets the application constraints and user expectations.

Our goal was to study and design a 3D teleoperation prototype offering good performance at a relatively
low cost (less than US$1,500). Here, we highlight the issues involved in designing such a system and
present a prototype that demonstrates the feasibility of the low-cost approach, showing its cost-performance
tradeoff. The results pave the way for the development of many new interactive real-time systems in
different application domains.

Related Research in 3D Remote Control
The use of 3D vision for teleoperation is a very active research field,1 because it has been shown that 3D viewing technologies
might provide users with higher depth perception. As expected, some tasks benefit more than others from a better comprehension
of distance,2 such as teleguide and obstacle localization. However, even in demanding situations such as in emergency
applications, teleoperation with 3D vision typically improves remote-control performance.3

John McIntire, Paul Havig, and Eric Geiselman have reviewed the literature investigating human factors that have implications
on task performance when stereoscopic 3D displays are used.4 The tasks include judging absolute and relative distances, finding
and identifying objects, navigating and manipulating objects in terms of position, and performing orientation and tracking.

Researchers have also investigated acquisition and visualization technologies. For example, work has shown that, using
efficient algorithms, correctly calibrated stereoscopic images provide a guaranteed depth perception.5 Other work has assessed
the performance achieved using different viewing technologies during remote-control operations, providing results in terms of

usability while comparing 3D and 2D viewing, 3D and virtual-reality displays, and robot sensors.6
Studies have also addressed the problem using simulation. For example, researchers performed a pick-and-place task in a

simulated virtual environment using three different systems: multiple 2D displays, a 3D perspective display, and a 3D stereoscopic
display.7 Although the gain in performing simple tasks was limited, introducing a stereoscopic display resulted in better
performances than the perspective display for highly difficult tasks.

Finally, Salvatore Livatino and Giovanni Muscato were interested in the effect of video feedback latency, so they performed
usability studies that substituted real video images with synthetic images from robot laser data.8 The authors observed that by
using a technique to minimize the amount of bandwidth (and delay) required for the transmission, they could significantly reduce
the amount of time spent performing a given task, thus improving system usability.

References
1. S. Livatino et al., “Mobile Robot Teleguide Based on Video Images,” IEEE Robotics & Automation,

Dec. 2008, pp. 58–67.

2. D.R. Tyczka et al., “Study of High-Definition and Stereoscopic Head-Aimed Vision for Improved

Teleoperation of an Unmanned Ground Vehicle,” Proc. of Society of Photo-Optical Instrumentation Engineers

(SPIE) 8387, May 2012, article no. 83870L.

3. J.Y. Chen et al., Effectiveness of Stereoscopic Displays for Indirect-Vision Driving and Robot

Teleoperation, tech. report, Army Research Lab in Aberdeen, Aug. 2010.

4. J.P. McIntire, P.R. Havig, and E.E. Geiselman, “What Is 3D Good For? A Review of Human

Performance on Stereoscopic 3D Displays,” Proc. of Society of Photo-Optical Instrumentation Engineers

(SPIE) 8383, May 2012, article no. 83830X.

5. M. Ferre et al., “3D-image Visualization and Its Performance in Teleoperation,” Proc. 2nd Int’l Conf.

Virtual Reality (ICVR 07), 2007, pp. 22–31.

6. S. Livatino, G. Muscato, and F. Privitera, “Stereo Viewing and Virtual Reality Technologies in

Mobile Robot Teleguide,” IEEE Trans. Robotics, vol. 25, no. 6, 2009, pp. 1343–1355.

7. S.H. Park, The Effects of Display Format and Visual Enhancement Cues on Performance of Three-

Dimensional Teleoperational Tasks, PhD dissertation, Dept. of Industrial Eng., Texas Tech University, 1998.

8. S. Livatino and G. Muscato, “Robot 3D Vision in Teleoperation,” World Automation Congress

(WAC), June 2012, pp. 1–6.

COTS and Open Source Solutions

To reach our goals, we focused our attention on consumer off-the-shelf (COTS) hardware and open source
software. COTS components cost much less than dedicated hardware, but they can have (slightly) lower
performance.

The scientific literature and open source domain offer many algorithms and reference implementations
for problems in the fields of communication, visualization, stereoscopy, and so on. The downside of open
source versus commercial software again relates to performance. However, with suitable modifications and
component selection, open source software offers good-performance, low-cost solutions that the final
installer can customize to address the specific implementation and its goals.

Furthermore, while designing our system, we focused on simplicity of use and customization. We also
wanted to create an open-platform-based design and use widespread standards for coding and
communication. Although our current solution is only a prototype, we hope it stimulates further research
and investments in this research area.

Architecture Design

A generic structure of a teleoperation system based on real-time 3D video feedback has two main parts: a
mobile streaming node equipped with a stereoscopic camera, and a client application for 3D visualization
(see Figure 1).

Figure 1. A block diagram of a 3D video transmission chain suitable for remote teleoperation systems. A
stereoscopic camera mounted on the teleoperated machine wirelessly transmits to a receiver suitable for
3D vision.

The transmitter node is located on the teleoperated machine so that the capture device can record the
vision of the area from the device’s point of view. The system’s core must process the captured images so
that a timely robust transmission can occur through a wireless channel to the remote operation side. On the
receiver side, the software reconstructs and renders the 3D image from the received data on a graphic
display device in a format suitable for stereoscopic vision. The key point for successful system operation is
to guarantee low end-to-end latency, which is a fundamental requisite to achieve a good real-time
interaction experience.1

Issues with a Consumer-Level Solution
The deployment of consumer-level solutions for remote control 3D video systems is made difficult by
constraints that relate to the high cost of industrial-grade components and to the use of proprietary, closed
systems. As noted earlier, to enable consumer-level solutions at a reduced cost, we investigated the
feasibility of using COTS hardware components, integrated using open source software frameworks. In
doing so, we prioritized the following issues.

First, we wanted to find a mobile device with suitable resolution and highly responsive output of the
captured images. For this reason, we excluded still-picture cameras. We also wanted to reduce the video
encoding latency using appropriate encoding algorithms.

Next, we wanted to make the system sufficiently robust to some packet losses—an event possible in any
communication scenario that can severely affect the user’s perceived video quality. As we will see later,
suitable choices of encoding algorithms and related configurations can help address this issue.

Finally, we wanted to render the stereoscopic video using a technology widely supported in an open
source environment.

Component Selection and Evaluation
The previous considerations led us to develop the building blocks of our proposed teleoperation system
based on real-time 3D video feedback (see Figure 2 and the related video at

http://youtu.be/5zApDO3wSq4, which also shows the components).

Figure 2. System architecture and components. A mobile phone with stereoscopic capabilities wirelessly
transmits to a computer that can render 3D video using active glasses. The total cost of the system is
approximately US$1,500.

Our prototype includes the following five key components.

A stereoscopic camera. We used a commercially available 3D mobile phone (HTC Evo 3D) that let us
achieve, at a moderate cost, stereoscopic vision, portability, a battery-operated power supply, and wireless
communication. In field experiments, we experienced a latency between 150 and 200 ms in the best
conditions. This is slightly higher than the ideal requirement (less than 150 ms), but it’s probably the most
efficient solution that the COTS market can currently provide. In fact, this loss of performance is the price
to pay for keeping the overall system cost low.

We also evaluated other solutions, such as 3D cameras, but the majority of them either didn’t let us
transmit video in real-time, or the format (such as the Digital Video format) required further processing and
thus increased system cost, complexity, and latency.

Encoding and transmission software. We developed a custom-built open source encoding and
transmission software specifically for the HTC Evo 3D phone to minimize encoding and transmission
latency.

Networking hardware. We used standard networking hardware—a commercially available 802.11
access point for transmission over a standard Wi-Fi channel.

Receiver and decoder software. We custom built open source receiver and decoder software on top of
the Linux OS and openGL libraries.

Stereoscopic hardware support. We used a standard desktop computer with stereoscopic hardware
support, including a graphic board, a monitor, and an infrared emitter device for the active glasses. The
identified solution for supporting hardware openGL is based on an Nvidia Quadro 4000 graphics board,
which provides a direct connection from the video card to the infrared emitter device without the need for
specific driver support in Linux (see the specifications at www.nvidia.com/object/product-quadro-4000-
us.html). This greatly simplified the management of stereoscopic issues in the receiver but also increased
the final system’s cost.

Alternative Solution
Because Nvidia doesn’t officially support 3D visualization for the Linux environment, we could have
implemented a cheaper solution (for approximately $900) using an experimental driver that’s publicly
available on the Internet (http://sourceforge.net/projects/libnvstusb. The driver lets you work with much
cheaper video cards by synchronizing the infrared emitter using the USB connector. However, we didn’t
pursue this solution, because it doesn’t currently provide stable performance.

System Implementation

Much of our time was spent developing a video transmission application that could achieve performance
comparable to more expensive professional solutions while relying only on low-cost COTS devices. The
application (available at http://media.polito.it/itpro) consists of both a transmitter and a receiver part. We
implemented the video transmission on top of the Android platform (www.android.com) using both Java
code and our optimized routines for video compression, compiled in native code to improve performance.
To achieve maximum robustness against data loss and minimum latency, we implemented the video codec,
which segments images in independently decodable subareas to allow pipeline processing and better error
resilience.

Due to the strict latency constraints, it’s not possible to retransmit data; however, encoding and
packetization is designed so that the content of each single packet that has been successfully received can
be decoded and presented to the user, because no packet depends on other ones for decoding. Missing data
is estimated using a frame-copy concealment technique. Data is sent using the standard RTP protocol2 with
a header extension that simplifies recovery in case of packet losses.

On the receiver side, the software features a multithreaded architecture that decouples the packet
reception and decoding from data visualization so that the interaction with the device-rendering engine
doesn’t affect the time required to process the input data. For the visualization part, we used the openGL
library (www.opengl.org/sdk), including its extension for stereoscopic visualization. Therefore, the
developer needs to draw data only on the correct frame buffer (left or right) and the library automatically
handles all visualization issues, including alternating left and right views on the screen at the correct frame
rate and synchronizing with the shutter glasses.

Our choice was to rely on open source software at the underlying level, but the whole system can be
easily ported and extended to any platform. The transmitter is written partly in Java and partly in C
(compression routines), while the receiver is standard C code using sockets, threads, and openGL—a set of
libraries available on the vast majority of platforms.

Results

We tested the system in a practical scenario designed to investigate a set of factors that could affect the
operator’s performance in remote teleoperation—in particular, the latency of the video feedback for
effective control and the quality of the stereoscopic images for effective 3D perception.

The chosen components and system design already take latency and image size into account.
Nevertheless, because these two factors conflict with each other, care should be taken to correctly balance
the two components. For example, the more we increase image quality, the more we burden system latency
and thus reduce usability.

Figure 3a shows the total amount of delay introduced by the different components of the communication
chain: acquisition, processing, transmission, and rendering. First of all, an intrinsic lower bound in the
overall delay is given by the sum of the camera acquisition latency, the rendering screen refresh rate, and
the network transmission time. In our setup, this delay accounted for approximately 130 ms and was the
same for any system configuration we tested. Second, we tested whether the time required for image
compression—which depends on the device’s computational capabilities—heavily influences the maximum
frame rate that can be achieved.

Figure 3. System prototype: (left) the quality versus latency tradeoff in the test scenario
and (right) the 3D vision prototype performing the test.

The latency measurements with the different image-quality configurations showed that the request for
high quality strongly affects the time required for the image-compression process. This behavior limits the
achievable frame rate and, in turn, increases the total end-to-end delay. For example, with a frame
resolution of 416 × 240 pixels, we were able to encode video at 20 to 22 frames per second, while with a
frame resolution of 640 × 352 pixels, we achieved 14 to 18 fps; with 1,280 × 720 pixels, only 3 to 5 fps was
possible.

We designed an experiment with the smartphone camera mounted on a radio-controlled toy car and
asked users to perform an alignment task using the 3D vision system and the car remote controller (see
Figure 3b and the related video at http://youtu.be/1Olg1oV2fIs).

User feedback confirmed that the frame rate allowed by the maximum resolution configuration was too
low to effectively drive the car, because its overall latency (more than 300 ms) highly impaired user
reactivity to the car movements. On the contrary, users preferred the first two setups—even if the image
quality was lower—because their latency was within 200 ms—a value still considered satisfactory for
interactive communications.3 In particular, because the difference in latency between the first two setups
wasn’t really perceivable, almost all users preferred the second setup (640 × 352). However, recent findings
suggest that further quality reductions might not significantly impair the ability to perform given tasks. 4

This could pave the way for adaptively choosing codec and coding parameters, thus varying quality if
necessary, depending on the network bandwidth availability.

Moreover, we also considered the case of transmission over the wireless Internet. Experiments show that
the system can work with the video qualities shown in Figure 3a using between 800 and 1,700 kbit/s. These
rates have been experienced using a 3G connection with a packet loss rate lower than 1 percent. However,
latency is approximately 80 ms higher compared to Wi-Fi, and packet-delay variation (jitter) was up to 30
ms, which delays the visualization of some frames. Latency has an impact mainly on the system’s
perceived responsiveness, while jitter makes the video feedback subject to very short freezes that can be
annoying.

In general, the results of the evaluation process indicate that the system can be applied in a context of
remote teleoperation where real-time video feedback requirements can be somewhat relaxed by trading off
costs with latency. With this setup, we expect that low-cost 3D visualization systems will become popular
in myriad new contexts, from domotics and disability assistance to gaming and entertainment. Further
studies are in development, with the aim of increasing system timeliness, even for the high-quality video
setup.

Future work might include additional optimizations to enhance the user experience. For example, dropping
the open source requirement in favor of proprietary software libraries will let us reduce processing time by
exploiting specific hardware support for video acceleration. At the same time, the system’s total cost can be
significantly reduced using much cheaper 3D video cards not yet supported by open source software.

References
1. J.C. Lane et al., “Effects of Time Delay on Telerobotic Control of Neutral Buoyancy Vehicles,” Proc. IEEE Int’l

Conf. Robotics and Automation (ICRA 02), vol. 3, 2002, pp. 2874–2879.

2. H. Schulzrinne et al., RTP: A Transport Protocol for Real-Time Applications, RFC 3550, July 2003;

http://tools.ietf.org/html/rfc3550.

3. One-Way Transmission Time, ITU-T recommendation G.114, May 2003.

4. E. Masala and A. Servetti, “Performance vs. Quality of Experience in a Remote Control Application Based on

Real-Time 3D Video Feedback,” Proc. 5th Int’l Workshop on Quality of Multimedia Experience (QoMEX 13),

2013, pp. 28–29.

Enrico Masala is an assistant professor at Politecnico di Torino, Italy. His main research interests include the development of

algorithms for quality optimization of communications over packet networks, wireline, and wireless, with a particular emphasis on
multimedia and specific contexts such as 3D video and dynamic adaptive HTTP streaming. Contact him at
enrico.masala@polito.it.

Antonio Servetti is an assistant professor at Politecnico di Torino, Italy. His research focuses on speech/audio processing, and

real-time multimedia communications. With the advent of video and audio support in HTML5, his interests include also
multimedia Web applications and HTTP adaptive streaming. Contact him at antonio.servetti@polito.it.

Angelo Raffaele Meo is an emeritus professor at Politecnico di Torino, Italy. He has been involved in numerous national projects in

computer engineering, investigating a broad range of topics, including switching theory, hardware design, signal processing,
speech analysis and synthesis, and pattern recognition. He also served as the president of the Academy of Sciences of Torino
and as the president of the Italian government commission entrusted with the task of promoting open source in the Italian Public
Administration. Contact him at meo@polito.it.

	COTS and Open Source Solutions
	Architecture Design
	Issues with a Consumer-Level Solution
	Component Selection and Evaluation
	A stereoscopic camera. We used a commercially available 3D mobile phone (HTC Evo 3D) that let us achieve, at a moderate cost, stereoscopic vision, portability, a battery-operated power supply, and wireless communication. In field experiments, we experienced a latency between 150 and 200 ms in the best conditions. This is slightly higher than the ideal requirement (less than 150 ms), but it’s probably the most efficient solution that the COTS market can currently provide. In fact, this loss of performance is the price to pay for keeping the overall system cost low.
	Encoding and transmission software. We developed a custom-built open source encoding and transmission software specifically for the HTC Evo 3D phone to minimize encoding and transmission latency.
	Networking hardware. We used standard networking hardware—a commercially available 802.11 access point for transmission over a standard Wi-Fi channel.
	Receiver and decoder software. We custom built open source receiver and decoder software on top of the Linux OS and openGL libraries.
	Stereoscopic hardware support. We used a standard desktop computer with stereoscopic hardware support, including a graphic board, a monitor, and an infrared emitter device for the active glasses. The identified solution for supporting hardware openGL is based on an Nvidia Quadro 4000 graphics board, which provides a direct connection from the video card to the infrared emitter device without the need for specific driver support in Linux (see the specifications at www.nvidia.com/object/product-quadro-4000-us.html). This greatly simplified the management of stereoscopic issues in the receiver but also increased the final system’s cost.

	Alternative Solution

	System Implementation
	Results

